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Reduced chi-squared is a very popular method for model assessment, model comparison,
convergence diagnostic, and error estimation in astronomy. In this manuscript, we discuss
the pitfalls involved in using reduced chi-squared. There are two independent problems:
(a) The number of degrees of freedom can only be estimated for linear models. Concerning
nonlinear models, the number of degrees of freedom is unknown, i.e., it is not possible to
compute the value of reduced chi-squared. (b) Due to random noise in the data, also
the value of reduced chi-squared itself is subject to noise, i.e., the value is uncertain.
This uncertainty impairs the usefulness of reduced chi-squared for differentiating between
models or assessing convergence of a minimisation procedure. The impact of noise on the
value of reduced chi-squared is surprisingly large, in particular for small data sets, which
are very common in astrophysical problems. We conclude that reduced chi-squared can
only be used with due caution for linear models, whereas it must not be used for nonlinear
models at all. Finally, we recommend more sophisticated and reliable methods, which are
also applicable to nonlinear models.

1 Introduction

When fitting a model f with parameters ~θ to N data values yn, measured with (uncorrelated)
Gaussian errors σn at positions ~xn, one needs to minimise

χ2 =
N∑
n=1

(
yn − f(~xn; ~θ)

σn

)2

. (1)

This is equivalent to maximising the so-called “likelihood function”. If the data’s measurement
errors are not Gaussian, χ2 should not be used because it is not the maximum-likelihood
estimator. For the rest of this manuscript, we shall therefore assume that the data’s errors are
Gaussian. If K denotes the number of degrees of freedom, reduced χ2 is then defined by

χ2
red =

χ2

K
. (2)

χ2
red is a quantity widely used in astronomy. It is essentially used for the following purposes:

1. Single-model assessment: If a model is fitted to data and the resulting χ2
red is larger than

one, it is considered a “bad” fit, whereas if χ2
red < 1, it is considered an overfit.

2. Model comparison: Given data and a set of different models, we ask the question which
model fits the data best. Typically, each model is fit to the data and their values of χ2

red

are compared. The winning model is that one whose value of χ2
red is closest to one.
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3. Convergence diagnostic: A fit is typically an iterative process which has to be stopped
when converged. Convergence is sometimes diagnosed by monitoring how the value of
χ2

red evolves during the iteration and the fit is stopped as soon as χ2
red reaches a value

sufficiently close to one. Sometimes it is claimed then, that “the fit has reached noise
level”.

4. Error estimation: One fits a certain model to given data by minimising χ2 and then
rescales the data’s errors such that the value of χ2

red is exactly equal to one. From this
one then computes the errors of the model parameters. (It has already been discussed by
Andrae (2010) that this method is incorrect, so we will not consider it any further here.)

In all these cases, χ2
red excels in simplicity, since all one needs to do is divide the value of χ2 by

the number of degrees of freedom and compare the resulting value of χ2
red to one.

In this manuscript, we want to investigate the conditions under which the aforementioned
applications are meaningful – at least the first three. In particular, we discuss the pitfalls that
may severly limit the credibility of these applications. We explain the two major problems that
typically arise in using χ2

red in practice: First, we dicuss the issue of estimating the number of
degrees of freedom in Sect. 2. Second, we explain how the uncertainty in the value of χ2 may
affect the above applications in Sect. 3. Section 4 is then dedicated to explain more reliable
methods rather than χ2

red. We conclude in Sect. 5.

2 Degrees of freedom

Given the definition of χ2
red, it is evidently necessary to know the number of degrees of freedom

of the model. For N data points and P fit parameters, a näıve guess is that the number of
degrees of freedom is N − P . However, in this section, we explain why this is not true in
general. We begin with a definition of “degrees of freedom” and then split this discussion into
three parts: First, we discuss only linear models. Second, we discuss linear models with priors.
Third, we discuss nonlinear models. Finally, we discuss whether linearisation may help in the
case of nonlinear models.

2.1 Definition

For a given parameter estimate, e.g., a model fitted to data, the degrees of freedom are the
number of independent pieces of information that were used. The concept of “degrees of
freedom” can be defined in different ways. Here, we give a general and simple definition. In
the next section, we give a more technical definition that only applies to linear models.

Let us suppose that we are given N measurements yn and a model with P free parameters
θ1, θ2, . . . , θP . The best-fitting parameter values are found by minimising χ2. This means we
impose P constraints of the type

∂χ2

∂θp
= 0 ∀p = 1, 2, . . . , P (3)

onto our N -dimensional system. Hence, the number of degrees of freedom is K = N − P . At
first glance, this appears to be a concise and infallible definition. However, we shall see that
this is not the case.
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2.2 Linear models without priors

A linear model is a model, where all fit parameters are linear. This means it is a linear
superposition of a set of basis functions,

f(~x, ~θ) = θ1B1(~x) + θ2B2(~x) + . . .+ θPBP (~x) =
P∑
p=1

θpBp(~x) , (4)

where the coefficients θp are the fit parameters and the Bp(~x) are some (potentially nonlinear)
functions of the position ~x. A typical example is a polynomial fit, where Bp(x) = xp. Inserting
such a linear model into χ2 causes χ2 to be a quadratic function of the fit parameters, i.e.,
the first derivatives – our constraints from Eq. (3) – form a set of linear equations that can be
solved analytically under certain assumptions.

A natural approach to solve such sets of linear equations is to employ linear algebra. This
will lead us to a quantitative definition of the number of degrees of freedom for linear models.
Let us introduce the following quantities:

• ~y = (y1, y2, . . . , yN)T is the N -dimensional vector of measurements yn.

• ~θ = (θ1, θ2, . . . , θP )T is the P -dimensional vector of linear model parameters θp.

• Σ is the N ×N covariance matrix of the measurements, which is diagonal in the case of
Eq. (1), i.e., Σ = diag(σ2

1, σ
2
2, . . . , σ

2
N).

• X is the so-called design matrix which has format N × P . Its elements are given by
Xnp = Bp(~xn), i.e., the p-th basis function evaluated at the n-th measurement point.

Given these definitions, we can now rewrite Eq. (1) in matrix notation,

χ2 = (~y −X · ~θ)T ·Σ−1 · (~y −X · ~θ) . (5)

Minimising χ2 by solving the constraints of Eq. (3) then yields the analytic solution

~̂θ = (XT ·Σ−1 ·X)−1 ·XT ·Σ−1 · ~y , (6)

where the hat in ~̂θ accounts for the fact that this is only an estimator for ~θ, but not the true ~θ
itself. We then obtain the prediction ~̂y of the measurements ~y by,

~̂y = X · ~̂θ = X · (XT ·Σ−1 ·X)−1 ·XT ·Σ−1 · ~y = H · ~y , (7)

where we have introduced the N × N matrix H , which is sometimes called “hat matrix”,
because it translates the data ~y into a model prediction ~̂y. The number of effective model
parameters is then given by the trace of H (e.g. Ye 1998; Hastie et al. 2009),

Peff = tr(H) =
N∑
n=1

Hnn = rank(X) , (8)

which also equals the rank of the design matrix X.1 Obviously, Peff ≤ P , where the equality
holds if and only if the design matrix X has full rank. Consequently, for linear models the
number of degrees of freedom is

K = N − Peff ≥ N − P . (9)

1The rank of X equals the number of linearly independent column vectors of X.
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The standard claim is that a linear model with P parameters removes P degrees of freedom
when fitted to N data points, such that the remaining number of degrees of freedom is K = N−
P . Is this correct? No, not necessarily so. The problem is in the required linear independence
of the P basis functions. We can also say that the P constraints given by Eq. (3) are not
automatically independent of each other. Let us consider a trivial example, where the basis
functions are clearly not linearly independent:

Example 1 The linear model f(~x, ~θ) = θ1 + θ2 is composed of two constants, θ1 and θ2, i.e.,
B1(~x) = B2(~x) = 1. Obviously, this two-parameter linear model cannot fit two arbitrary data
points and its number of degrees of freedom is not given by N − 2 but N − 1, because the design
matrix X only has rank 1, not rank 2. In simple words, the two constraints ∂χ2

∂θ1
= 0 and ∂χ2

∂θ2
= 0

are not independent of each other.

From this discussion we have to draw the conclusion that for a linear model the number of
degrees of freedom is given by N −P if and only if the basis functions are linearly independent
for the given data positions ~xn, which means that the design matrix X has full rank. In practice,
this condition is usually satisfied, but not always. In the more general case, the true number
of degrees of freedom for a linear model may be anywhere between N − P and N − 1.

2.3 Linear models with priors

Figure 1: Example of a two-parameter
model, f(x) = a0 + a1x, that is incapable
of fitting two data points perfectly because
it involves a prior a1 ≥ 0. We show the op-
timal fit for the given data. The model is
discussed in Example 2.

Priors are commonly used to restrict the possible
values of fit parameters. In practice, priors are
usually motivated by physical arguments, e.g., a
fit parameter corresponding to the mass of an
object must not be negative. Let us consider a
very simple example of a prior:

Example 2 A linear model f(x, a0, a1) = a0 +
a1x is given. The value of parameter a0 is not
restricted, but a1 must not be negative. Figure
1 demonstrates that this two-parameter model is
incapable of sensibly fitting two arbitrary data
points because of this prior.

Obviously, priors reduce the flexibility of a
model, which is actually what they are designed
to do. Consequently, they also affect the num-
ber of degrees of freedom. In this case, the prior
was a step function (zero for a1 < 0 and one
otherwise), i.e., it was highly nonlinear. Conse-
quently, although f(x, a0, a1) = a0 + a1x is itself
a linear function of all fit parameters, the overall
model including the prior is not linear anymore.
This leads us directly to the issue of nonlinear models.

2.4 Nonlinear models

We have seen that estimating the number of degrees of freedom is possible in the case of linear
models with the help of Eq. (8). However, for a nonlinear model, we cannot rewrite χ2 like in

Eq. (5), because a nonlinear model cannot be written as X ·~θ. Therefore, H does not exist and
we cannot use Eq. (8) for estimating the number of degrees of freedom. Ye (1998) introduces

4



Andrae et al. (2010) – Dos and don’ts of reduced χ2

the concept of “generalised degrees of freedom”, but concludes that it is infeasible in practice.
We now consider two examples in order to get an impression why the concept of degrees of
freedom is difficult to grasp for nonlinear models:

Example 3 Let us consider the following model f(x), having three free parameters A, B, C,

f(x) = A cos(Bx+ C) . (10)

If we are given a set of N measurement (xn, yn, σn) such that no two data points have identical
xn, then the model f(x) is capable of fitting any such data set perfectly. The way this works is
by increasing the “frequency” B such that f(x) can change on arbitrarily short scales.2 As f(x)
provides a perfect fit in this case, χ2 is equal to zero for all possible noise realisations of the
data. Evidently, this three-parameter model has infinite flexibility (if there are no priors) and
K = N − P is a poor estimate of the number of degrees of freedom, which actually is K = 0.

Example 4 Let us modify the model of Example 3 slightly by adding another component with
additional free parameters D, E, and F ,

f(x) = A cos(Bx+ C) +D cos(Ex+ F ) . (11)

If the fit parameter D becomes small such that |D| � |A|, the second component cannot influence
the fit anymore and the two model parameters E and F are “lost”. In simple words: This model
may change its flexibility during the fitting procedure.

Hence, for nonlinear models, K may not even be constant.3 Of course, these two examples
do not verify the claim that always K 6= N − P for nonlinear models. However, acting as
counter-examples, they clearly falsify the claim that K = N − P is always true for nonlinear
models.

2.5 Local linearisation

As we have seen above, there is no well-defined method for estimating the number of degrees
of freedom for a truly nonlinear model. We may now object that any well-behaved nonlinear
model4 can be linearised around the parameter values which minimise χ2. Let us denote the
parameter values that minimise χ2 by ~Θ. We can then Taylor-expand χ2 at ~Θ to second order,

χ2(~θ) ≈ χ2
min +

P∑
p,q=1

∂2χ2

∂θp∂θq

∣∣∣∣
~θ=~Θ

(θp −Θp)(θq −Θq) , (12)

where the first derivative is zero at the minimum. Apparently, χ2 is now a quadratic function of
the model parameters, i.e., the model is linearised. Does this mean that we can simply linearise
the model in order to get rid of the problems with defining the number of degrees of freedom
for a nonlinear model?

The answer is definitely no. The crucial problem is that linearisation is just an approxima-
tion. The Taylor expansion of Eq. (12) has been truncated after the second-order term. There

2In practice, there is of course a prior forbidding unphysically large frequencies. But there is no such
restriction in this thought experiment.

3For linear models this cannot happen, since products (or more complicated functions) of model parameters
are nonlinear.

4With “well-behaved” we mean a model that can be differentiated twice with respect to all fit parameters,
including mixed derivatives.

5
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are two issues here: First, in general, we do not know how good this approximation really is for
a given data sample. Second, we have no way of knowing how good the approximation needs
to be in order to sufficiently linearise the model from the number-of-degrees-of-freedom point
of view.

Even if these issues did not concern us, would linearising the model really help? Again,
the answer is no. As we have seen in Sect. 2.2, the number of degrees of freedom is also not
necessarily given by N−P for a linear model. Moreover, the truly worrisome result of Sect. 2.4 –
that the number of degrees of freedom is not constant – is not overcome by the linearisation. The
reason is that the expansion of Eq. (12), and thereby the linearisation, depends nonlinearly upon
where the maximum is.5 Consequently, the uncertainties in the maximum position inherited
from the data’s noise propagate nonlinearly through the expansion of Eq. (12). Therefore, we
have to draw the conclusion that there is no way of reliably estimating the number of degrees
of freedom for a nonlinear model.

2.6 Summary

Summarising the arguments brought up so far, we have seen that estimating the number of
degrees of freedom is absolutely nontrivial. In the case of linear models, the number of degrees
of freedom is given by N − P if and only if the basis functions are indeed linearly independent
in the regime sampled by the given data. Usually, this is true in practice. Otherwise, the
number of degrees of freedom is somewhere between N − P and N − 1. However, in the case
of nonlinear models, the number of degrees of freedom can be anywhere between 0 and N − 1
and it is even not necessarily constant during the fit. Linearising the model at the optimum
does not really help to infer the number of degrees of freedom, because the linearised model
still depends on the optimum parameters in a nonlinear way. Hence, it is questionable whether
it is actually possible to compute χ2

red for nonlinear models in practice.

3 Uncertainty in χ2

We now discuss another problem, which is completely independent of our previous considera-
tions. Even if we were able to estimate the number of degrees of freedom reliably, this problem
would still interfere with any inference based on χ2

red. This problem stems from the fact that
the value of χ2 is subject to noise, which is inherited from the random noise of the data.6

Consequently, there is an “uncertainty” on the value of χ2 and hence on χ2
red, which is typically

ignored in practice. However, we show that this uncertainty is usually large and must not be
neglected, because it may have a severe impact on the intended application.

Given some data with Gaussian noise, the true model having the true parameter values will
generate a χ2 = N and has N degrees of freedom because there is no fit involved. Hence, it
results in a χ2

red of 1. We therefore compare the χ2
red of our trial model to 1 in order to assess

convergence or to compare different models. Is this correct?
In theory, yes. In practice, no. Even in the case of the true model having the true parameter

values, where there is no fit at all, the value of χ2 is subject to noise. In this case, we are
fortunate enough to be able to quantify this uncertainty. For the true model having the true

5For a linear model the second derivatives of χ2 do not depend on any model parameters, i.e., they are
constant.

6For a given set of data, χ2 can of course be computed. However, consider a second set of data, which was
drawn from the same physical process such that only the noise realisation is different. For this second set of
date, the value of χ2 will differ from that of the first set.
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parameter values and a-priori known measurement errors σn, the normalised residuals,

Rn =
yn − f(~xn, ~θ)

σn
(13)

are distributed according to a Gaussian with mean µ = 0 and variance σ2 = 1.7 In this case
only, χ2 is the sum of K = N Gaussian variates and its probability distribution is given by the
so-called χ2-distribution,

prob(χ2;K) =
1

2K/2Γ(K/2)

(
χ2
)K/2−1

e−χ
2/2 . (14)

Figure 2 shows some χ2-distributions with different values of K. The expectation value of the
χ2-distribution is,

Figure 2: χ2-distributions for different values
of K = N degrees of freedom. The distribu-
tions are asymmetric, i.e., mean and maxi-
mum (mode) do not coincide. For increasing
K = N , the distributions become approxi-
mately Gaussian.

〈χ2〉 =

∫ ∞
0

χ2 prob(χ2;K) dχ2 = K . (15)

In fact, this expectation value is sometimes used
as an alternative definition of “degrees of free-
dom”. As the χ2-distribution is of non-zero
width, there is however an uncertainty on this
expectation value. More precisely, the variance
of the χ2-distribution is given by 2K. This
means the expectation value of χ2

red for the true
model having the true parameter values is in-
deed one, but it has a variance of 2/K = 2/N .
If N is large, the χ2-distribution becomes ap-
proximately Gaussian and we can take the root
of the variance, σ =

√
2/N , as an estimate of

the width of the (approximately Gaussian) peak.
Let us consider a simple example in order to get
a feeling how severe this problem actually is:

Example 5 We are given a data set comprised
of N = 1, 000 samples. Let the task be to use χ2

red

in order to compare different models to select that one which fits the data best, or to fit a single
model to this data and assess convergence. The true model having the true parameter values –
whether it is given or not – will have a value of χ2

red with an (approximated) Gaussian standard
deviation of σ =

√
2/1000 ≈ 0.045. Consequently, within the 3σ interval 0.865 ≤ χ2

red ≤ 1.135
we can neither reliably differentiate between different models nor assess convergence.

This simple example clearly shows that this problem is very drastic in practice. Moreover,
astronomical data sets are often much smaller than N = 1, 000, which increases the uncertainty
of χ2

red.
Of course, there is not only an uncertainty on the comparison value of χ2

red for the true
model having the true parameter values. There is also an uncertainty on the value of χ2

red

for any other model. Unfortunately, we cannot quantify this uncertainty via σ ≈
√

2/K in

7Again, we implicitely assume that the Gaussian errors are uncorrelated, as in Eq. (1). If the measurement
errors σn are not known a priori but have been estimated from the data, the normalised residuals Rn are drawn
from Student’s t-distribution (e.g. Barlow 1993). With increasing number of data points Student’s t-distribution
approaches a Gaussian distribution.
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practice anymore, because the χ2-distribution applies only to the true model having the true
parameter values. For any other model the normalised residuals (cf. Eq. (13)) are not Gaussian
with mean µ = 0 and variance σ2 = 1. Hence, χ2 is not the sum of K Gaussian variates and
the derivation of the χ2-distribution is invalid.

4 Alternative methods

If χ2
red does not provide a reliable method for assessing and comparing model fits, convergence

tests or error estimation, what other methods can then be used with more confidence? An
in-depth survey of alternative methods would be beyond the scope of this manuscript. There-
fore, we restrict our discussion on some outstanding methods. Concerning methods for error
estimation, we refer the interested reader to Andrae (2010).

4.1 Residuals

The first and foremost thing to do in order to assess the goodness of fit of some model to some
data is to inspect the residuals. This is indeed trivial, because the residuals have already been
computed in order to evaluate χ2 (cf. Eq. (1)). For the true model having the true parameter
values and a-priori known measurement errors, the distribution of normalised residuals (cf. Eq.
(13)) is by definition Gaussian with mean µ = 0 and variance σ2 = 1. For any other model, this
is not true. Consequently, all one needs to do is to plot the distribution of normalised residuals
in a histogram and compare it to a Gaussian of µ = 0 and σ2 = 1. If the histogram exhibits
a statistically significant deviation from the Gaussian, we can rule out that the model is the
truth. If there is no significant difference between histogram and Gaussian, this can mean (a)
we found the truth, or (b) we do not have enough data points to discover the deviation. The
comparison of the residuals to this Gaussian should be objectively quantified, e.g., by using a
Kolmogorov-Smirnov test8 (Kolmogorov 1933; Smirnov 1948).

In theory, this method may be used as a convergence diagnostic. In an iterative fit procedure,
compare the distribution of normalised residuals to the Gaussian with µ = 0 and σ2 = 1 in
each iteration step, e.g., via a Kolmogorov-Smirnov test. At first, the likelihood of the residuals
to be Gaussian will increase as the model fit becomes better. If the fit finds a suitable local
minimum, the model may eventually start to overfit the data and the likelihood of the residuals
to be Gaussian will decrease again, as the residuals will peak too sharply at zero. When this
happens, the fitting procedure should be stopped. In practice, there is no guarantee that this
works, as the fit may end up in a local minimum with residuals too widely spread to resemble
the Gaussian with µ = 0 and σ2 = 1.

Similarly, this method may also be used for model comparison. Given some data and a
set of models, the model favoured by the data is that whose normalised residuals match the
Gaussian with µ = 0 and σ2 = 1 best. The winning model does not need to be the truth. Let
us consider the following example:

Example 6 Vogt et al. (2010) analysed radial-velocity data of the nearby star GJ 581 and came
to the conclusion that the data suggests the presence of six exoplanets instead of four as claimed
by other authors using different data (e.g. Mayor et al. 2009). Vogt et al. (2010) assumed
circular orbits, which result in nonlinear models of the form of Eq. (10) in Example 3. Their
claim that two additional planets are required is primarily justified from the associated χ2

red (cf.

8The Kolmogorov-Smirnov (KS) test compares the empirical cumulative distribution function (CDF) of a
sample to a theoretical CDF by quantifying the distance between the distributions. Under the (null) hypothesis
that the sample is from the given distribution, this distance (called the KS-statistic) has a known probability
distribution. Now, the test calculates the KS-statistic and compares it to its known probability distribution.

8
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Planets 1 2 3 4 5 6
p-value 8.71 · 10−11 2.97 · 10−9 2.51 · 10−7 1.28 · 10−4 1.47 · 10−5 6.97 · 10−8

χ2
red 8.426 4.931 4.207 3.463 2.991 2.506

Table 1: p-values from KS-test and χ2
red for 1–6 planets for the data of Vogt et al. (2010)

discussed in Example 6.

Table 1). We take the identical data as Vogt et al. (2010) and their asserted orbital parameters
of the six planets (their Table 2). For every number of planets, we apply the KS-test to the
normalised residuals. Table 1 gives the resulting p-values9 for the six models. In terms of the
KS-test, the data used by Vogt et al. (2010) strongly favour the model using four planets over the
model using six planets. Furthermore, Fig. 3 displays the distributions of normalised residuals
for the models using four and six planets. Evidently, both distributions deviate significantly from
the Gaussian with µ = 0 and σ2 = 1, which implies that neither model is compatible with the
truth. The most likely explanation for this discrepancy is that planetary orbits may be elliptical,
whereas Vogt et al. (2010) assumed circular orbits.

There is a pitfall here, as well. The likelihood of the normalised residuals to come from a
Gaussian with µ = 0 and σ2 = 1 is also subject to noise, as in the case of the value of χ2.
However, these uncertainties surely cannot explain the large differences in Table 1.

4.2 Cross-validation

Figure 3: Distributions of normalised resid-
uals for the data and models of Vogt et al.
(2010) using four planets (blue histogram)
and six planets (red histogram). For com-
parison we also show the Gaussian with µ =
0 and σ2 = 1. As the number of data
points is large (N = 241), there is no dif-
ference between this Gaussian and Student’s
t-distribution.

Cross-validation is one of the most powerful and
most reliable methods for model comparison.
Unfortunately, it is usually also computationally
expensive. However, if χ2

red is not applicable,
e.g., because the model is nonlinear, computa-
tional cost cannot be used as an argument in
disfavour of cross-validation.

The most straightforward (and also most ex-
pensive) flavour of cross-validation is “leave-one-
out cross-validation”. We are given N data
points and a set of models, and we want to know
which model fits the data best. For each model,
the goodness of fit is estimated in the following
way:

1. Remove the n-th data point from the data
sample.

2. Fit the model to the remaining N −1 data
points.

3. Take the model fitted to the N − 1 data
points and compute its likelihood for the
n-th data point that has been left out.

9Loosely speaking, in this case, the p-value is the probability that the true model can generate residuals that
agree with the standard Gaussian as badly as or worse than the actually observed ones.

9
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4. Repeat steps 1 to 3 from n = 1 to n = N
and compute the goodness of the predic-
tion of the whole data set by multiplying
the likelihoods obtained in step 3.

Steps 3 and 4 require the data’s error distribution to be known in order to evaluate the good-
ness of the prediction for the left-out data point through its likelihood. For instance, if the
data’s errors are Gaussian, the goodness of the prediction is simply given by Eq. (13) as
usual. Evidently, repeating steps 1 to 3 N times is what makes leave-one-out cross-validation
computationally expensive. It is also possible to leave out more than one data point in each
step.10 However, if the given data set is very small, cross-validation becomes unstable. A nice
application of cross-validation can be found, e.g., in Hogg (2008).

4.3 Bootstrapping

Bootstrapping is somewhat more general than cross-validation, meaning it requires less knowl-
edge about the origin of the data. Cross-validation requires the data’s error distribution to be
known in order to evaluate the likelihoods, whereas bootstrapping does not. Of course, this is
an advantage if we do not have this knowledge. However, if we do know the data’s errors, we
should definitely exploit this knowledge by using cross-validation. Bootstrapping is discussed
in Andrae (2010) in the context of error estimation. Therefore, we restrict its discussion here
on the context of model comparison.

Let us suppose we are given 4 measurements y1, y2, y3, y4. We then draw subsamples of
size 4 from this data set with replacement. These subsamples are called bootstrap samples.
Examples are:

• y1, y2, y3, y4 itself,

• y1, y2, y2, y4,

• y2, y4, y4, y4,

• y1, y1, y1, y1,

• etc.

We draw a certain number of such bootstrap samples, and to every such sample we then fit all
the models that are to be compared.

In the context of model comparison, bootstrapping is typically used as “leave-one-out boot-
strap” (e.g. Hastie et al. 2009). The algorithm is given by:

1. Draw a certain number of bootstrap samples from a given data set.

2. Fit all the models to every bootstrap sample.

3. For the n-th data point yn in the given data set, consider only those bootstrap samples
that do not contain yn. Predict yn from the models fitted to these bootstrap samples.

4. Repeat step 3 from n = 1 to n = N and monitor the goodness of the predictions, e.g., by
least squares.

Like cross-validation, bootstrapping aims at the prediction error of the model. Therefore, it is
sensitive to over- and underfittings.

10The reason why cross-validation is so reliable is that it draws on the predictive error of the model, rather
than the fitting error. Therefore, cross-validation can detect underfitting (the model is not flexible enough to
describe the data) and also overfitting (the model is too flexible compared to the data). The fitting error is only
sensitive to underfitting, but not to overfitting (χ2 always decreases if the model becomes more complex).
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5 Conclusions

We have argued that there are two fundamental problems in using χ2
red, which are completely

independent of each other:

1. In Sect. 2, we have seen that estimating the number of degrees of freedom, which is
necessary for evaluating χ2

red, is absolutely nontrivial in practice:

• Concerning linear models, for N given data points and P fit parameters the number
of degrees of freedom is somewhere between N − P and N − 1, where it is N − P if
and only if the basis functions of the linear model are linearly independent for the
given data. Equation (8) provides a quantification for the effective number of fit
parameters of a linear model. Priors can cause a linear model to become nonlinear.

• Concerning nonlinear models, the number of degrees of freedom is somewhere be-
tween zero and N − 1 and it may not even be constant during a fit, i.e., N − P is a
completely unjustified guess. The authors are not aware of any method that reliably
estimates the number of degrees of freedom for nonlinear models. Consequently, it
appears to be impossible to compute χ2

red in this case.

2. In Sect. 3, we have seen that the actual value of χ2
red is uncertain. If the number N of

given data points is large, the uncertainty of χ2
red is approximately given by the Gaussian

error σ =
√

2/N . For N = 1, 000 data points, this means that within the 3σ-interval
0.865 ≤ χ2

red ≤ 1.135 we cannot compare models or assess convergence.

Given these considerations, it appears highly questionable whether the popularity of χ2
red –

which is certainly due to its apparent simplicity – is indeed justified. As a matter of fact, χ2
red

cannot be evaluated for a nonlinear model, because the number of degrees of freedom is unknown
in this case. This is a severe restriction, because many relevant models are nonlinear. Moreover,
even for linear models, χ2

red has to be used with due caution, considering the uncertainty in its
value.

Concerning alternative methods for model comparison, we have explained cross-validation
and bootstrapping in Sect. 4. We also explained how the normalised residuals of a model can be
used to infer how close this model is to the true model underlying the given data. Concerning
alternative methods for error estimation, we refer the interested reader to Andrae (2010).

Finally, we want to emphasise that the above considerations concerning χ2
red have no impact

on the correctness of minimising a χ2 in order to fit a model to data. Fitting models to data is
a completely different task that should not be confused with model comparison or convergence
testing. Minimising χ2 is the correct thing to do whenever the data’s measurement errors are
Gaussian and a maximum-likelihood estimate is desired.
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