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We present a theory for tunneling between a real surface and a model probe tip, applicable to the
recently developed "scanning tunneling microscope. " The tu,nneling current is found to be propor-
tional to the local density of states of the surface, at the position of the tip. The effective lateral
resolution is related to the tip radius 8 and the vacuum gap distance d approximately as
[(2 A)(R+d)]'~2. The theory is applied to the 2&&1 and 3&(1 reconstructions of Au(110); results for
the respective corrugation ainplitudes and for the gap distance are all in excellent agreement with

0
experimental results of Binnig et al. if a 9-A tip radius is assumed. In addition, a convenient ap-
proximate calculational method based on atom superposition is tested; it gives reasonable agreement
with the self-consistent calculation and with experiment for Au{110). This method is used to test the
structure sensitivity of the microscope. We conclude that for the Au{110) measurements the experi-
mental "image" is relatively insensitive to the positions of atoms beyond the first atomic layer. Fi-
nally, tunneling to semiconductor surfaces is considered. Calculations for GaAs{110) illustrate in-

teresting qualitative differences from tunneling to metal surfaces.

I. INTRODUCTION

One of the most fundamental problems in surface phys-
ics is the determination of surface structure. Recently a
new and uniquely promising technique, the "scanning tun-
neling microscope" (STM), was introduced. ' This
method offers, for the first time, the possibility of direct,
real space d-etermination of surface structure in three di-
mensions, including nonperiodic structures. A small met-
al tip is brought near enough to the surface that the vacu-
um tunneling resistance between surface and tip is finite
and measurable. The tip scans the surface in two dimen-
sions, while its height is adjusted to maintain a constant
tunneling resistance. The result is essentially a contour
map of the surface.

For electronic states at the Fermi level, the surface
represents a potential barrier whose height is equal to the
work function P. As expected by analogy with planar
tunneling, the current varies exponentially with the vacu-
um gap distance, with decay length A'(Smg) '~. For
typical metallic work functions, this length is about 0.4 A.
Thus, aside from issues of lateral resolution, in the
constant-current scanning mode the tip may be expected
to follow the surface height to 0.1 A or better. It can be
seen from the data that the new microscope designs have
sufficient mechanical stability to achieve this in prac-
tice. '

The one-dimensional tunneling problem (i.e., through
two-dimensionally uniform barriers) has been treated ex-
tensively, and field emission from a tip is well under-
stood. The usefulness of STM stems from the fact that it
is neither one dimensional nor operating as a field emitter,
but is instead sensitive to the full three-dimensional struc-
ture of the surface. Little was known quantitatively about
tunneling in this case, until the recent development of
STM motivated the present work (parts of which were re-
ported briefly elsewhere ), and other approaches, ' which

are discussed briefly below.
Here we develop a theory of STM which is at once suf-

ficiently realistic to permit quantitative comparison with
experimental "images, " and sufficiently simple that the
implementation is straightforward. The surface is treated
"exactly, " while the tip is modeled as a locally spherical
potential well where it approaches nearest the surface.
This treatment is intuitively reasonable and is consistent
with the current poor understanding of the actual micro-
scopic geometry of the tip, which is prepared in an uncon-
trolled and nonreproducible manner.

In Sec. II we present the formal development of the
theory. The tunneling current is found to be proportional
to the (bare) surface local density of states (LDOS) at the
Fermi level (EF) at the position of the tip. The effective
lateral resolution is roughly [(2 A)(R +d)]'~, where R is
the tip radius of curvature and d is the vacuum gap.
General features of the surface LDOS are discussed, as
are the various approximations. Some other recent ap-
proaches ' to the problem are also considered.

Section III describes a calculation for the 2&&1 and
3)&1 reconstructions of the Au(110) surface. The results
are in quantitative agreement with recent measurements
of Binnig et al. if a 9-A tip radius is assumed. General
features and limitations of the numerical implementation
are discussed. In particular, self-consistent electronic
structure calculations of vacuum charge far from the sur-
face are at present only feasible for systems with small
unit cells.

We therefore introduce in Sec. IV a crude approxima-
tion for the surface LDOS, which permits convenient cal-
culation of the STM image even for large unit cells or
nonperiodic systems. Comparison with results of Sec. III
shows that the approximation works rather well, at least
for Au(110). Using this approximation, we compare the
images expected for different possible structures of
Au(110). We conclude that STM is rather insensitive to
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the position of the surface layer relative to the underlying
layers. For the Au(110) 3 )& 1 surface, even the presence or
absence of a missing row in the second layer cannot be re-
liably distinguished.

Finally, in Sec. V, we consider the case of a semicon-
ducting surface. The theory is expected still to apply,
though with some modifications. In particular, the image
may be qualitatively different for different tunneling po-
larity or sample doping. This effect is illustrated with
calculations for GaAs(110).

II. THEORY OF STM

While it is easy to write down a formal expression for
t'he tunneling current, many approximations are needed to
derive an expression which permits practical computation.
Some of the approximations made below are sufficiently
drastic that they can be justified only because of the rela-
tive insensitivity of any conclusions to the resulting errors.
It is therefore not convenient to justify the various ap-
proximations as they are introduced. Instead, we first
present the theory in Sec. II A. Then in Sec. II 8 we con-
sider general features of the surface loca1 density of states
and, hence, of the tunneling current as a function of tip
position. These results determine the intrinsic resolution
and sensitivity of STM. Finally, in Sec. II C we consider
the various approximations and their possible effect.

A. Tunneling current

The tunneling current is given to first order in
Bardeen's' formalism by

I= g f(E„)[1 f(E +eV)]—~M~ ~
5(E„E), —

where f(E) is the Fermi function, V is the applied volt-
age, M& is the tunneling matrix element between states

g& of the probe and tP of the surface, and Ez is the ener-

gy of state g& in the absence of tunneling. Note that
while (1) resembles ordinary first-order perturbation
theory, it is formally different in that g& and g are
nonorthogonal eigenstates of different Hamiltonians. For
high temperatures there is a corresponding term for re-
verse tunneling. Since the experiments are performed at
room temperature or below and at small voltage
(-10 meV for metal-metal tunneling), we take the limits
of small voltage and temperature,

The quantity on the right is simply the surface local den-
sity of states (LDOS) at EF, i.e., the charge density from
states at E~. Thus the tunneling current is proportional
to the surface LDOS at the position of the point probe,
and the microscope. image represents a contour map of
constant surface LDOS. This almost trivial result antici-
pates major features of the more complete treatment
below.

In handling (2) in general, the essential problem is to
calculate M&„. Bardeen' has shown that

g2
Mpv= f dS'(e/ ~e ev~—el.»

where the integral is over any surface lying entirely within
the vacuum (barrier) region separating the two sides. The
quantity in parentheses is simply the current operator.

To evaluate M&„, we expand the surface wave function
in the form

& =&. ' 'X~Gexpt(~'+
I

~G
I

)' z1exp(iaG x),
6

(4)

which is a completely general expression for P in the re-
gion of negligible potential. Here 0, is sample volume,
a=Pi '(2m/)'~ is the minimum inverse decay length for
the wave functions in vacuum, P is the work function, and

KG = k
~~
+G, where k

~ ~

is the surface Bloch wave vector
of the state, and G is a surface reciprocal-lattice vector.
The first few aG are typically of order unity. For a non-
periodic surface the sum over G becomes an integral.

Since the microscopic structure of the tip is not yet
known, we model it as a locally spherical potential well
where it approaches nearest to the surface, as illustrated in
Fig. 1. R is the local radius of curvature about the center
located at Zo, and d is the distance of nearest approach to
the surface. In the region of interest, the wave functions
of the tip are taken to have the asymptotic spherical form

y„=n "c,~re"~(~( r —ro()-'e "''
where 0, is the probe volume and a. is defined as above.

(2)I= e Vg ~M„„~ 5(E„—EF)5(E„EF). —
PY V

Before attempting a realistic treatment, it is worthwhile
to consider the limit where the tip is replaced with a point
probe. This case represents the ideal of a nonintrusive
measurement of the surface, with the maximum possible
resolution. If the tip wave functions are arbitrarily local-
ized, then the matrix element is simply proportional to the
amplitude of g at the position ro of the probe, and (2)
reduces to

I g ~y,(r-, ) ~'5(E, EF). —

FIT+. 1. Schematic picture of tunneling geometry. Probe tip
has arbitrary shape but is assumed locally spherical with radius
of curvature A, where it approaches nearest the surface (shad-
ed). Distance of nearest approach is d. Center of curvature of
tip is labeled ro.
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(We assume for simplicity that the work function P for
the tip is equal to that of the surface. ) The form is chosen
to be correctly normalized when the parameter c, (which
is determined by the tip geometry, detailed electronic
structure, and tip-vacuum boundary condition) is of order
1. We have neglected the possible angular dependence of
f&, which introduces some quantitative modifications dis-
cussed below.

We expand the tip wave function (5) in the same form
as the surface (4) using the fact that

(»r) 'e "'= J d qb(q)exp[ (» —+q )'
~

z
~ ]

Xexp(iq. x),
b(q)=(2m) '» (1+q /» ) (7)

32~3+—1&2 I/y2D (E )R 2» —4& 2KR

X g ( g„(ro) ('5(E„EF), — (9)

where D, is the density of states per unit volume of the
probe tip. Note that (8) does not imply that the value of
the surface wave function 1t at ro is physically relevant.
The matrix elexnent is determined by an integral entirely
within the gap region. However, because of the analytic
properties of (4) and (5), the formal evaluation of f, at
distance R+d correctly describes the lateral averaging
due to finite tip size.

The spherical-tip approximation entered only the nor-
malization of (5). The crucial approximation was evaluat-
ing the matrix element only for an s-wave tip wave func-
tion. The q dependence of b(q) in (7) then canceled that
of the z derivative in the matrix element (3), so that (9) in-
'volved only undistorted wave functions of the surface.
For tip wave functions with angular dependence ( l&0), it
is sufficient to include the m =0 term (other m give a
node towards the surface). In that case, the terms in the
Fourier expansion of g„are weighted by a factor
-(1+q /» ) in the matrix element, which for relevant

The matrix element is then almost trivial to evaluate.
Substituting the surface and the tip wave functions in (3)
and evaluating the expansion term by term in G, one finds

2

Mz„—— 4n» '0, ' »Re" f (ro), (8)
2m

where ro is the position of the center af curvature of the
tip. Substituting into (2), the desired result is

values of 'q can be approximated by unity for small l. (In
the, example below the relevant q /» =0.1. ) The tip
model therefore becomes less accurate for large R, where
higher I values become more important. A more exact
treatment would probably be far less useful, since it would
require more specific information about the tip wave
functions, and would not reduce to an explicit equation
such as (9) or (10) below.

Substituting typical metallic values into (9), one obtains
for the tunneling conductance

a =0.1R e "p(ro,Ep),

p(ro, E)= g i g (ro)
i

5(E E),—
(10)

where o. is in ohms ', distances are in a.u. , and energy in
eV. Since

~ f (ro)
~

&xe "' +"', we see from (10) that
a cc e '" as expected. Because of the exponential depen-
dence on distance, it is not essential that the coefficient in
(10) be very accurate.

We considered above the limit of a point probe. Real-
istically, the sharpest tip imaginable is a single atom, sup-
ported on a cluster or small plateau. The form (5) is not
really appropriate for determining the normalization of g&
in that case. However, because of the insensitivity of re-
sults to the coefficients, an adequate estimate for the
single-atom case may be obtained simply by taking
R =2» ' (roughly the metallic radius for most metals) in
(10).

Note that p(r, EF) is simply the surface local density of
states (at EF) at the point r or, equivalently, the charge
per unit energy from states of the surface at EF. Accord-
ing to (10), at constant current the tip follows a contour of
constant p(r, EF). We therefore consider the behavior of
p( r,EF ) in some detail.

B. General features of p( r, EF )

Within the approximations above, the microscope. im-
age is simply a contour of constant p( r,E~) of the surface.
The behavior of p(r, EF), along with the tip radius, there-
fore determines the resolution and sensitivity of STM.
Moreover, a detailed picture of p(r, EF) is essential in as-
sessing the approximate method described in Sec. IV.

The starting point here is Eq. (4).for the surface wave
function. A given wave function P contributes a charge
density

=0, ' g aGaG exp[ —(» +»G)' z —(» +»G)' z+i(»G —»G). r] .
G, G'

Since»G —»G ——0—6',
~ g„~ has the periodicity of the

lattice and can be-Fourier expanded,

= g u~(z)e'
G

The total p( r,E) may similarly be written

(12)
= g pG(z, E)e'

G

pG(z, E)= g u~(z)5(E„—E).

(13)

(14)
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At sufficiently large distances p( r,E) becomes rather
smooth, and only the lowest nonzero Fourier component
need be retained for this discussion. This is so in the ex-
ample of Au(110) in Sec. III, where the STM image is
practically sinusoidal. (The case where the image is high-
ly structured is considered below. ) Then

p( r,EF ) =po(z, EF ) +2p G, (z,E~ )cos(G, x ), (15)

dz
ln[pG (z,E~)]=2(~ + —,

' G, )'~

where we have assumed a reflection symmetry and where
6& is the smallest G. Far from the surface po(z, E+) is
dominated by states near the center (I ) of the surface
Brillouin zone, since aG ——0 gives the longest decay length
(decay constant =2~), in (4) and (11). It can be seen from
minimizing the exponents in (11) that the longest decay
length for pG occurs at a~~

———,'G&. Then
~
vG

~

= —, G~ for

G =0 or —G~. The corresponding asymptotic decay con-
stant for pG is

decay constant (16) seems to have rather general validity.
These results may be used to define an effective real-

. space resolution for STM. The suppression of the Fourier
term for 6&0 by a factor exp( ——,~ '6 z) is precisely
the effect of averaging over a Gaussian resolution func-
tion of rms width (0.5a. 'z)'~, i.e., full width at half
maximum 1.66(a 'z)'~ . Recall that for the relevant con-
tours, z =R +d; if R ~~d, the resolution is determined by
the tip radius but is nonetheless much smaller than R,
since ~ '&1 A. For R &&d, as in the case of a single-
atom effective tip, the resolution is limited by d and,
therefore, by how small a tunneling resistance is experi-
mentally feasible. Note, however, that reducing d from 6
to 4 A requires a decrease in tunneling voltage, or an in-
crease in current, by roughly a factor of 200, and yet gives
only a 20% increase in resolution.

In the plane of the surface atoms, z =0, p(r) is rather
localized within the unit cell. It is reasonable, therefore, to
assume po(z =0)=pG(z =0), as long as there is only one
atom per surface cell. Then at large z the corrugation (19)
becomes

2K+ 4K G)2 ,(16) (20)

using —,6& «~ . [For Au(110), 6& /2~=0. 1.]
The extremal values of z for constant current [constant

p(r, EF)] occur at cos(G~ x) =+1, and these are denoted
z~ here. Then from (15),

po(z) —2pG(z)

po(z)+ 2pG(z)
(18)

where z is some average value between z+ and z . At
distances were the image is sufficiently smooth (ah « 1),
using (16), (18) becomes

b, =2& 'p G(z) p/(oz) ~e

P=2(x + —„'G~)'~ —2~= —,v 'G~ .
(19)

Thus, the corrugation decreases exponentially with dis-
tance from the surface, the decay length p being very sen-
sitive to the surface lattice constant. This corrugation de-
cay length is in agreement with numerical calculations
described below. Of course, the result applies only far
from the surface (pz&1), and is not strictly correct
(though it still works well in practice) if there is a gap in
the projected one-dimensional density of states at EF for

kiI
——0 or —,G].
If the surface unit cell is large, then the features of in-

terest in the image may be well localized within the unit
cell. This is the case, for example, in images of the Si(111)
7 & 7 surface. Then the Bloch wave vector may be
neglected, and it is easy to show that for any G such that
G~ &&G &a, the most slowly decaying term in (11) con
tributing to pG has the same falloff as given in (16), with
G~ replaced by 6, to lowest order in (6 /4a ). Thus the

p(r ) =pc(z~ )+2&G(z+ ),
where the argument EF is omitted for simplicity. Defin-
ing the corrugation amplitude 6=z+ —z and using

po(z+ ) =e " po(z ), (17) gives

This crude approximation, in fact, gives a good semiquan-
titative description of the results of the self-consistent cal-
culations for Au(110) described below. A more systematic
(though similarly crude) prescription for approximating
p(r, E~) is suggested below.

C. Assessment of approximations

We now return to the theory developed in Sec. II A and
consider the accuracy and generality of the many approxi-
mations made there.

The most 'crucial point is that rather large errors can be
tolerated in the coefficient in (9) and (10). A factor of
e =7 error in the coefficient shifts the inferred value of

0

ro for a given current by only ~ '&1 A. The corre-
sponding change in the corrugation b, is, using (19),
roughly a factor of exp( ——„'6 /~ )=0.92 for Au(110)
2&&1 (6=0.8 A '), an error under 10%%uo. The substitu-
tion of typical metallic values in (10) is thus quite ade-
quate.

As mentioned above, the use of an s-wave tip wave
function is adequate if the real wave functions are restrict-
ed to small angular momentum l. For a sufficiently large
effective tip the approximation is expected to lose its de-
tailed validity. In any case, the s-wave treatment here is
not intended as an accurate description of a real tip, but
rather as a useful way of parametrizing the effect of finite
tip size, which is otherwise relatively intractible.

In Sec. II A we implicitly assumed that the potential
goes to zero in a region between the surface and tip and
that the integral (3) is taken in that region. Actually, the
electron is never more than about 3—6 A from the sur-
face, so the magnitude of the potential is never less than
—1 eV. Locally the effective value of v is

~(r) =Pi '(2m)'~ [P+ V(r)]'

The resulting modest ( —10'�) change in a. is unimportant
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except as it affects the wave function [as opposed to the
coefficient in (9)). The surface wave functions are calcu-
lated using the full potential, so we anticipate no problems
except that we neglect the contribution of the tip to the
potential. Without a more precise description of the real
tip, we see no way to incorporate the tip potential in a
consistent fashion.

(The local-density potential and thin slab geometries
used in Sec. III below may be a source of inaccuracy in
the implementation. However, such problems of im-
plementation are a separate issue from the intrinsic limita-
tions of the model presented here. )

When the tip and surface have different work func-
tions, the resulting potential gradient causes a smooth
variation in the effective ~(r) between surface and tip.
Again, as long as the difference is not great ( & 1 eV), we
expect no crucial changes.

While the nominal current density may be quite large,
the nanoamp current used corresponds to one electron per
1.6&(10 ' sec. This is long compared to relevant transit
times" as well as phonon vibration and relaxation times.
The electrons may therefore be viewed as tunneling one at
a time, and effects such as space charge and sample heat-
ing should be negligible.

We conclude that the approximations of Sec. II A are
adequate for a quantitative understanding of STM, within
the constraint of nearly complete ignorance of the micro-
scopic structure of the tip. We hope that in the future im-
proved characterization of the tip will permit a better
evaluation of the model presented here.

Some other theoretical treatments of STM have been re-
ported recently. ' Garcia et al. have applied methods
developed for atom diffraction to calculate the current be-
tween two periodic metal surfaces. One surface is taken
as strongly corrugated, and represents the tip. The poten-
tial is taken as flat throughout, with abrupt discontinuities
at the two surfaces. A major drawback of this approach
is that it is strictly numerical, and gives no direct insight
or intuition into what is measured in STM. Moreover the
quantitative results must be viewed with some caution.
The model form for the potential is somewhat arbitrary;
and, more important, the tip is treated in a peculiar
fashion. The tip is apparently taken as infinitely extended
in one dimension; moreover it is periodically repeated,
which could give rise to irrelevant and unphysical in-
terference effects. The model of Cxarcia et al. is appropri-
ate for studying qualitative aspects of vacuum tunneling,
but it is not clear how it could be usefully applied to aid
in making structural inferences from experimental images.
We prefer the approach taken here because it is at once
more quantitative and more conceptually transparent.

Feuchtwang et al. have pointed out that, instead of as-
suming a specific form for the tip wave function, one may
represent the current as a convolution of spectral func-
tions of the surface and tip. This suggests a possible ave-
nue of investigation, but may not be applicable to imaging
in the constant current mode (the only mode of STM im-
aging now considered practical). In any case the spectral
function of the tip is not known, so implementing this ap-
proach would probably require approximations similar in
spirit to those here. %"e prefer to retain the explicit asym-

metry between surface and tip, reflecting the asymmetry
both in our interest and in our understanding of the two.

III. AN EXAMPLE: Au(110)

In this section we describe a self-consistent calculation
for the Au(110) surface, and compare our results with re-
cent measurements of Binnig et al. Agreement is excel-
lent if a tip radius of 9 A is assumed. We also discuss
factors limiting the accuracy of the calculation and con-
clude that such calculations are feasible for relatively few
systems of interest for STM. In the next section we con-
sider an alternative approach which is less reliable but is
feasible even for extremely complex systems.

The Au(110) surface normally exhibits 2X 1 reconstruc-
tion with a missing-row geometry. ' A 3&1 reconstruc-
tion has also been observed. ' Recently Binnig et al. re-
ported high-resolution STM measurements for an Au(110)
surface with regions of both 2 X 1 and 3 X 1 structure and
concluded that the 3X 1 structure consisted of (111) mi-
crofacets analogous to the 2X 1. Measured STM corruga-
tions were 0.45 and 1.4 A for 2X 1 and 3 X 1, respectively.
(The two phases occurred together and were measured in
the same scan with the same tip, permitting direct com-
parison. )

Since Au(110) is the only surface with a tractible unit-
cell size for which high-resolution STM images are avail-
able, we have chosen it for detailed study in this section
and in the next. We have calculated p(r, EF) for both
2& 1 arid 3 X 1 surfaces using a recently developed linear-
ized augmented-plane-wave (LAPW) method described
elsewhere. ' For the 2 X 1 surface we used a slab
geometry of three complete layers with a half layer [alter-
nate (110) rows missing] on either side. The 3 X 1

geometry suggested by Binnig et al. was employed; an
asymmetric slab was constructed of two complete layers, a
third layer with one missing row, and a fourth layer with
two missing rows (see Fig. 2). The calculation is similar
to that in Ref. 13, with p(r, E~) approximated by the
charge in states within 0.5 eV of EF, divided by the finite
interval width of 1 eV.

Figure 2 shows the calculated p(r, E+) for Au(110).
Since the actual tip geometry is not known, we choose a
tip radius R =9 A, so that (10) gives a (2 X 1) corrugation
of 0.45 A at tunneling resistance 10 0 to fit experiment.
Then d is found to be 6 A, measured from the surface Au
nuclei to the edge of the tip potential well (i.e., the shell at
which the tip wave function becomes decaying in charac-
ter). This value is consistent with experimental estimates
of d based on resonant tunneling oscillations. Given
R, (10) yields a corrugation of 1.4 A for the (3X1) sur-
face, in excellent agreement with experiment.

The agreement here is gratifying; with one parameter,
R, we obtain good agreement with two experimental cor-
rugations, as well as with the gap distance. Nevertheless,
it is worth briefly considering the numerical aspects of the
calculation, which limit its accuracy.

In the surface LAPW method the wave functions are
expanded in a Laue basis beyond the last plane of atoms,
so the exponential decay poses no problems for simple
surfaces. However, for the very "open" Au(110) surface,
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FIG. 2. Calculated p(r, EI;) for Au(110) (2&1) (left) and (3&&1) (right) surfaces, Figure shows (1'10) plane through outermost
atoms. Positions of nuclei are indicated by solid circles (in plane) and squares (out of plane). Contours of constant p(r, EF) are la-
beled in units of a.u. eV '. Note break in distance scale. Peculiar structure around contour 10 of (3X1) is due to limitations of
the plane-wave part of the basis in describing the exponential decay inside the deep troughs. Center of curvature of probe tip follows
dashed line.

we are obliged to expand the wave functions in a plane-
wave basis in the "trough" region where surface atoms are
missing. Since the. wave functions decay exponentially
there, the expansion converges slowly. The persistence of
Gibbs's oscillations in the charge (Fig. 2) suggests that the
convergence is still imperfect, but the 400-plane-wave ex-
pansion is the maximum possible with a CRAY-1 com-
puter and our current code. (Some improvement could be
be obtained by taking advantage of inversion and reflec-
tion symmetry for a suitable slab geometry. )

The other major source of inaccuracy is the very thin
"slab" geometry employed. This might result in an inac-
curate work function, which would certainly affect the re-
sults to some extent. The calculated work functions are
5.7 and 5.2 eV for 2X1 and 3)&1 surfaces, respectively.
Also, the thin slab gives only a few discrete states for a
given wave vector. This sparse sampling of the bulk con-
tinuum leads to a numerical noise in energy-projected
quantities. For this reason we included states from a
rather large (1-eV) interval to approximate the charge
p(r, E~) from states at EF.

The local-density approximation used here does not
reproduce the correct image form. of the correlation po-
tential at large distances from the surface; presumably it
also gives incorrect lateral structure in the correlation po-
tential in this region. Neither of these shortcomings has a
significant effect on the results, however. The "cross-
over" from the high-density regime to the image-potential
regime occurs well outside the classical turning point for
electrons at the Fermi level, where the potential is small
compared to the (negative) kinetic energy. The structure
in the wave functions is determined by the strong poten-
tial near the atom cores, and the evolution, of the wave
functions at large distances from the surface is determined
primarily by kinetic energy, as discussed above.

None of these sources of inaccuracy can be expected to

greatly alter the results obtained; the calculation certainly
gives a good overall representation of the true p(r, EF~ .
Nevertheless, the accumulation of numerical uncertainties
dictates some care in drawing conclusions. In the analysis
above, d. was determined rather directly by (10), since the
dependence of, current upon R largely cancels as noted
above. However, R was inferred by fitting the experimen-
tal corrugation, which depends on R+d, and subtracting
d. The corrugation is more susceptible to errors, both ex-
perimental and theoretical, than is the current. Moderate
errors (-20%) in either the calculated or measured cor-
rugation amplitude have little effect on our conclusions.
Nevertheless, since this is the first such calculation for
STM, we believe it would be premature to rule out a tip
consisting in effect of one or two atoms. For a sufficient-
ly small cluster of atoms, the effective value of R depends
on the precise geometry.

IV. APPROXIMATE METHODS FOR STM

The unique strength of STM is that it is a truly local
real-space probe of surface geometry. As such it can
resolve isolated steps, defects, and impurities. The direct
computation of electronic structure for such nonperiodic
structures is not, in general, feasible. Conversely, STM
provides little information for relatively smooth low-
Miller-index surfaces, the only kind which are presently
susceptible to accurate calculation of the vacuum charge.
It is therefore imperative that methods for treating more
complex structures be developed, if the theoretical
analysis of STM results is to progress. Such methods
need not be highly accurate to be useful.

A. Atom superposition for p( r, EF )

The calculated p(r, EF) in Fig. 2 bears a strong resem-
blance to total charge densities, which have been ern-
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where P(r) is the charge density of the free atom, and R
are atom positions, which need not form a periodic lattice.
While this approximation has never been tested at the
large distances relevant for STM, we show below that it is
well worth trying.

A natural next assumption is

p(r, E~)~p(r )/Eo, (22)

where p( r ) is the total charge. To estimate Eo, we write

p( r,E)-A exp[ fi '(2m—E)'~ z]j, (23)

where the variation of A with E is assumed small over the
range contributing to p( r ). Then using

p(r) = I p(r, E)dE

and evaluating the integral, we find EO=EF/az. (The
derivation assumes ~z ~~1, so E' can be expanded about
EF.) For example, if az=. 10, then Eo= —,

' eV. The pre-
cise value is unimportant, as discussed in Sec. II C. Note
that the most drastic assumption is not (22), but rather the
use of (21) at distances so great that only states near EF
contribute.

The use of (21) and (22), however crude, is not totally
without justification. If the atom wave function is
P(r)-e "', it is not hard to show' that the asymptotic
decay length of the corrugation is identical to (16) and
(19), to first order in (6/2x) . For Au the atom eigen-
value is close to the work function in the local density ap-
proximation, and so ~ for the atom and for the surface are
almost the same. Were this not the case, one could re-
place the true atom charge with a model charge having
the decay length appropriate for the surface. The frac-
tional error in the atom superposition estimate of the cor-
rugation therefore approaches an asymptotic value rather
than growing without bound for large z. The decay
length for the charge is correct by construction, so the
method gives an excellent estimate of the gap distance d.

Intuitively one expects the greatest success for nobly
metals such as Au, where directional bonding is minimal.
In other 'eases, p(r, EF) may show marked eleetromc
structure effects, even when the total charge does not.
For interesting examples, see Ref. 17 and Sec. V below.

ployed in understanding helium scattering. ' ' It is
known' ' that the charge is sometimes well approximat-
ed by the superposition of atom charge densities,

(21)

image to be expected for a given atomic geometry.
We can also compare these atomic results directly with

experiment, as we did in Sec. III. Using R as a fitting pa-
rameter as before, we obtain excellent agreement with
both of the two measured corrugation amplitudes, and a
gap of d =6 A as before, by assuming R =4 A. Thus the
atom superposition calculation is entirely consistent with
the experimental data but leads to a different, (and
presumably less reliable) conclusion regarding the magni-
tude of R.

C. Structure sensitivity of STM

We are now in a position to calculate conveniently (al-
beit crudely) the STM image for an arbitrary geometry.
By comparing the images expected from different
geometries, we can judge what structural conclusion can
(or cannot) be drawn from experimental data.

As the first example, we consider the Au(110) 3 X 1 sur-
face. Binnig et a/. inferred a geometry with two rows
missing in the first layer and one in the second layer (see
Fig. 2), to account for the deep observed corrugation of
the 3&&1 surface ( 1.4 A versus 0.45 A for the 2X1).
While this inference is quite reasonable, we consider now
a more quantitative test. We have calculated p(r, EF)
with approximations (21) and (22) for two 3 & 1

geometries, one with and one without a row missing in the
second layer. The results are shown in Fig. 3. %'hile the

4+
4J 5

CO

B. Comparison with self-consistent results

We have repeated the caIculation of Sec. III using
the atom superposition approximation described
above. Assuming as before a 9-A tip radius, the calcu-
lated 2& 1 and 3 & 1 corrugations are 0.30 and 0.93 A,
both about 30% less than in the self-consistent calcula-
tion. (While the accuracy of that calculation could not be
ca1ibrated quantitatively, better agreement wouId probably
be fortuitous in any case. ) This level of accuracy is
enough to permit semiquantitative estimates of the STM

FIG. 3. Atom superposition charge density (a.u. ) for two
possible geometries of Au(110) 3&1. Solid lines are for same
geometry as in Fig. 2. Dashed lines are for geometry with no
atom missing in second layer. Triangle shows site of atom (out
of plane of figure) present only in latter case; squares show posi-
tion of other out-of-plane atoms.
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charge densities look radically different close to the sur-
face, at a distance of 10 A (where the corrugation is 1.4 A)
the corrugation amplitudes differ by only 15%; at 15 A
(appropriate for a 9-A tip) the corrugation amplitudes
differ by less than 5%. Realistically, even the 15%
difference is far too little to reliably distinguish the two
geometries. The greater corrugation in the 3&&1 case (as
compared to the 2X1) is attributable entirely to the
greater surface lattice constant, which permits clearer
resolution of the peaks and troughs. According to (19), a
smaller surface lattice constant (as for the 2&& 1) results in
an exponentially smaller corrugation at large distances.

As another sensitivity test, we compared the charge for
the 2&&1 surface to that for the (half-filled) first layer
alone. At distances greater than 8 or 9 A, the removal of
the second and all subsequent layers has no noticeable ef-
fect. While atom superposition neglects the electronic
changes for such a monolayer, the result at least tells us
that the STM data carry no useful information whatever
on the position of the first layer relative to the underlying
substrate. A more methodical study of the relationship be-
tween geometry and charge density (and hence the STM
image), also within the atom superposition approximation,
is presented by Tersoff et al. '

W
C3
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V. SEMICONDUCTOR SURFACES

As noted above, for small voltages the tunneling occurs
between states at EF. At semiconducting surfaces, EF lies
near the conduction- or valence-band edge, depending on
whether the doping is n or p type. The character of the
states at EF, and hence the form of p(r, EF), may be
drastically different for these two cases, giving corre-
spondingly different STM images.

For low doping or high voltages, the voltage polarity
rather than the doping may determine whether tunneling
involves valence or conduction states. In the one reported
example, Binnig et al. found that a measurable tunneling
current for the Si(111) surface required a large voltage,
over 2.5 V. These measurements were repeated with
heavily doped Si samples, however, and comparable STM
images were obtained with voltages in the 10-meV range
used for Au. The high voltage in the first instance was
probably developed across a non-Ohmic contact, a surface
barrier due to band-bending, or both. We now have no
reason to believe that the tunneling conductance in the
STM imaging regime is significantly different for semi-
conductors and metals.

One of the simplest semiconductor surfaces is the
cleaved GaAs(110) surface. The geometry of the 1X1
reconstruction is reasonably well established, and there are
known to be no surface states in the band gap. We there-
fore use this surface to illustrate the difference between
expected STM images for tunneling involving valence and
conduction states. Figure 4 shows p( r,E~) calculated for
the GaAs(110) surface, based on the charge in states
within 1 eV of the respective band edges. The total
charge density is also shown. Far from the surface, the

, valence-edge charge looks quite similar to the total charge
density. The charge is concentrated on the As atoms,
which are raised above the Ga by the reconstruction. As a

FIG. 4. Projected charge densities at the GaAs(110) surface,
in a (110) plane midway between the Ga and As atoms, in units
of bohr . The vacuum charge density is much smoother in the
direction perpendicular to the figure. The three panels show (a)
total charge; (b) charge in states within 1 eV of the valence-band
edge; (c) charge in states within 1 eV of the conduction-band
edge. Positions of the surface atoms, projected into the plane of
the figure, are given by circles (As) and squares (Ga). Horizon-
tal direction is (0'01), vertical is (110).

result, the image is well approximated by a superposition
of As atom charge densities.

The conduction-band charge, however, looks quite dif-
ferent. Charge is concentrated on the Ga atoms; but these
are lower than the As, with the net effect that both
contribute comparably to the vacuum charge. The total
corrugation is thus much smaller than for the valence
charge, with the charge density peaking weakly above the
Ga sites.

The surface lattice constant of GaAs(110) is less than 6
A, which may be beyond the power of STM to resolve.
However, the qualitative difference predicted for valence
and conduction-band tunneling here should be observable
in a wide variety of semiconducting surfaces.

VI. CONCLUSION

We have presented a simple theory for STM, which in-
cludes fully the detailed electronic structure of the surface
and yet is computationally tractable. The tunneling
current is found to be proportional to the surface LDOS
at the position of the tip. The approximations made ap-
pear to introduce relatively little inaccuracy, except that

I
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the tip is treated in a model way; even this approximation
probably cannot be significantly improved until the mi-
croscopic structure of the tip is better understood.

The theory provides explicit expressions for the intrin-
sic spatial resolution and for the dependence of the tun-
neling current on tip size and position. When apphed to
the Au(110) surface, the theory agreed well with experi-
ment. Moreover, the accuracy appeared to be limited by
the computational implementation rather than by intrinsic
factors.

Motivated both by the difficulty in carrying out accu-
rate electronic structure calculations for STM, and by the
need for a local technique for treating nonperiodic struc-
tures now observable with STM, we have proposed a sim-
ple approximate technique based on atom superposition,
analogous to methods often used for the helium-
diffraction problem. Despite its crudeness, this method
has some analytic justification in terms of its asymptotic
behavior, and gives good results for Au(110). It also pro-
vides a convenient way to test the sensitivity of STM to
details of the surface structure, such as the presence or ab- .
sence of a missing row in the second layer of Au(110)
3X1. We conclude that STM is [at least for the Au(110)
surfacej quite insensitive to positions of atoms beyond the

first layer.
Finally, we have considered in a qualitative way the

novel effects which may be observable in tunneling to
semiconductor surfaces, where valence and conducti'on
states have very different charge distributions. For the
Au(110) surface, the LDOS (and hence the image) reflect-
ed surface topography in a relatively straightforward way.
For GaAs(110), on the other hand, this was true only if
tunneling involved the valence band (as for tunneling out
of p-type GaAs). For conduction-band tunneling (into n-

type GaAs), the image bore no simple relation to the to-
pography, since the (lower) Ga atoms were emphasized by
electronic structure effects.

We have concentrated on the use of STM to determine
surface atomic structure, since this has been the main ap-
plication to date. However, the fact that STM really mea-
sures the surface LDOS may be exploited in the future to
give novel information about not only the topography of
surfaces, but their electronic structure as well.
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