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FIGURE 2.12 Res1st1v1ty data taken with a high purity aluminum rod as the sample.. The:
decay is clearly not described by a single exponential at the earlier times.

should be clear. You may see some transient oscillations of the signal
right after the field shuts off, but there should be plenty of time left after
- these oscillations die away for you to get a smooth curve. Figure 2.12
shows data acquired with a i-m diameter high-purity aluminum rod? at
room temperature as a sample. The data points are the output of a digital
oscilloscope displayed using MATLAB. Note that at the earliest times, there .
are higher order contributions to the signal (as described by Bean e al.), an .
one must choose a suitable range over which the data are indeed described .
by a single exponential. B

The fit shown in Fig. 2.12 yields a decay time tz = 3.051 x 107% s,
Then, from Eq. (2.16) we find for the resistivity SR

217x107°  ,
p=—"—"—  xr’(m®) =287x10"°Q -cm,
tg (s)

where we used the fitted value of t5 and » = 0.635 cm. This compare
well with the value listed in Table 2.1.

10From the Alfa Aesar company, http://www.alfa.com/.
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The main source of systematic uncertainty is likely to come from the
times over which the decaying voltage signal is fitted. At short times, the
decay is not a pure exponential because the transient terms bave not all
died away, so we want to exclude these times when we fit. At long times,
there may be some left over voltage level that is a constant added to the
exponential, and again, a pure exponential fit will be wrong. Varying the
upper and lower fit limits until we get a set that gives the same answer as
a set that is a little bit larger on both ends is one approach. One should be
convinced that the results are consistent. For example, use aluminum alloy
rods of the same composition but different radii, and check to make sure
that the decay lifetimes ¢g scale like r2. This should certainly be the case
to within the estimated experimental uncertainty.

Having learned how to take and analyze data on resistivity, we can now
investigate the temperature dependence. It is best to start simply by com-
paring the two samples of 1 5-in. diameter aluminum rods, one an alloy and
the other a (relatively) pure metal Vary the temperature by immersing the
samples in baths of ice water, dry ice and alcohol, and liquid nitrogen.
Boiling water or hot oil can also be used. These measurements are tricky.
One must remove the sample from the bath and measure the eddy current
decay before the temperature changes very much. Probably the best way to
do this is to take a single trace right after inserting the sample, stop the oscil-
loscope, and store the trace. Then one analyzes the trace offline to get the
decay constant. One might also try to estimate how fast the bar warms up by
making additional measurements after waiting several seconds, e.g., after
saving the trace. This would best be done with a sample whose resistivity,
and therefore ¢z, can be expected to change a lot with temperature. Pure
aluminum is a good choice. Remember that the temperature dependence
will be much different for the pure metal than for the alloy. Try to estimate
the contribution to the mean free path of the electrons due to the impurities.

2.3. EXPERIMENT ON THE HALL EFFECT

In Section 2.2 we saw how collisions of electrons with the crystal lattice
lead to an electrical resistance, when those electrons are forced to move
under an electric field. If one also applies a magnetic field, in a direction
perpendicular to the electric field, then the electrons (and other current
carriers) will be deflected sideways. As a result an electric field appears in
this direction, and therefore also a potential difference. This phenomenon
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is called the Hall effect, and has important applications both in identifying
the current carriers in a material and for practical use as a technique for
measuring magnetic fields.

Let us rewrite the microscopic formula for Ohm’s law, but this time
taking care to indicate current density and electric fields as vectors, and
to also note the ‘negative sign of the charge on the electron. Following
Egs. (2.12) and (2.13) we write

j = —nevq = ne*tE/m (2.18)
or
™4 _ . 2.19)
T

It is clear that in Eq. (2.19) we have made an approximation, replacing
the time rate of change of momentum, i.e., dp/dt = mdv/dz, with an
expression that uses the average acceleration vg/7. This is how we have
taken into account collisions with the crystal lattice.

It is straightforward to modify Eq. (2.19) to take into account the effect
of a magnetic field B. We have

mTV" — —¢(E + vq x B).

If we assume that the magnetic field lies in the z direction, and define the
cyclotron frequency w. = eB/m, then we can rewrite this equation as

etr
vy, = ——n;Ex — WcTVg,
er .
vq, = _;’L—Ey + weTvg, (2.20)
er
vg, = ——E;.
m

Consider now a long rectangular section of a conductor, as shown in
Fig. 2.13. A longitudinal electric field E, is applied, leading to a current
density flowing in the x direction. As this electric field is initially turned
on, the magnetic field deflects electrons along the y direction. This leads to
a buildup of charge on the faces parallel to the xz plane, and therefore an
electric field E, within the conductor. In the steady state, this electric field
cancels the force due to the magnetic field, and the current density is strictly:
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FIGURE 2.13 The standard geometry for discussing the Hall effect (after Kittel).

in the x direction, hence vd, = 0. From Egs. (2.20) we therefore have

eBt
Ey = M@ Vg, = e (_EEx) = —w.TEy = ———Ex.
e e m m
The appearance of the electric field Ey is the Hall effect.
A convenient experimental quantity is the Hall coefficient Ry, defined as

E
Ry = Y

= 2.21
JxB @20

The quantities Ey, jy, and B are all straightforward to measure, and in our
simple approximation for electrons in conductors we have (from Eq. (2.18))
jx = ne?t E, /m; therefore,

eBtEx/m 1

- =, 2.22
H (netE,/m)B - ne (2:22)
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That is, the Hall coefficient is the inverse of the carrier charge density. In
fact, the Hall effect is a useful way to measure the concentration of charge
carriers in a conductor. It is also convenient to define the Hall resistivity as
the ratio of the transverse electric field to the longitudinal current density,
that is,

pu = Ey/jx = BRu, (2.23)

which depends (in our approximation) only on the material and the applied
magnetic field.

2.3.1. Measurements

In order to measure the Hall effect, one needs a sample of a conductor,
but not an especially good conductor. This is because one also needs a
relatively low carrier density ne in order to get a sizable effect; this of
course leads to a relatively high resistivity. As seen in Table 2.1, bismuth
is a good candidate metal, and we describe such an experiment here.!!
The setup uses a bismuth sample with rectangular cross section, mounted
on a probe with attached leads for measuring current and voltage. A ther-
mocouple is also attached to the sample so that temperature measurements
can be carried out. The magnetic field is provided by an electromagnet
capable of delivering a field up to ~5 kG over a volume roughly 1 cm?®,
The bismuth sample probe is shown in Fig. 2.14. The width of the bismuth
sample is w = 6.5 mm and its thickness, measured with a micrometer,
ist = 1.65 x 10~% m. The effective length of the sample is the distance
between the leads used to measure the current (“white” and “brown,” as
shown in Fig. 2.14). In our case, this distance is £ = 7 mm. Current is
supplied by a DC power supply, connected to the sample through the “red”
and “black’” leads. The Hall voltage is measured with a digital multimeter,
using the “green” lead and the output of a potentiometer used to balance
the voltage on the “white” and “brown” leads. A separate bundle of wires
are connected to leads that carry current to the heating resistor, and to a
thermocouple that measures the temperature of the bismuth sample.
Begin by determining the Hall coefficient at room temperature and for a
relatively high magnetic field. Turn on the electromagnet power supply to

11gemiconductors also make good candidates, with a very low carrier density compared
to a metal. For a description of such a setup, see A. Melissinos, Experiments in Modern
Physics, First ed., Academic Press, New York, 1966.
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FIGURE 2.14 Schematic of the probe used to make measurements of the Hall effect
in bismuth. Electrical connections are made to the bismuth sample using copper leads. A
thermocouple, as well as aresistor which acts asa heat source, is also attached to the sample.
Two separate bundles of wires emerge from the probe, one of which is used exclusively for
heating the sample and for measuring its temperature.

Black

around 4 kG. It will likely need an hour or so to stabilize. In the meantime,
with the sample probe removed from the magnetic field, run about 3 A
through the bismuth sample, and adjust the potentiometer so that the Hall
voltage is zero. Return the current through the sample to zero. The sample
can get quite hot while it is conducting so much current. Be careful not to
touch it, or to touch it to anything else.

When the electromagnet is stabilized, measure and record the magnetic
field using a gaussmeter, or by some other technique. Now, place the sample
probe in the center of the magnetic field. Quickly raise the current I through
the sample to 3.0 A, and record the Hall voltage V1. Then, quickly, reduce
the current by 0.25 A, and record the Hall voltage again. You should carry
this series of measurements out rather rapidly to avoid leaving the bismuth
sample at high temperature for any extended period of time. When you
have reduced the current to near zero, and recorded the final value of the
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FIGURE 2.15 Sample of Hall effect data, taken at room temperature and with a magnetic
field B = 4.42 kG.

Hall voltage, remove the probe and recheck the value of the magnetic
field.

A sample of data taken in this way, at room temperature and with B =
4.42 kG, is shown in Fig. 2.15. A free linear straight line fit gives a slope
of 1.23 mV/A, with an intercept very close to zero. In terms of quantities
related to our measurement, the Hall coefficient (Eq. (2.21)) is expressed by

R:Ey_ Va/w  Vur _ dVut
A=7%B I/wxtB 1B dl B’

where we note that our data yields a very good direct proportional
relationship between Vi and 7. Using SI units, this yields

VAWAY 10~4
Ry = (1.23 x 10_3K) (M) =459 x 1077 m3/C

0.442°T

This is quite close to an accepted room temperature value of Ry = 5.4 x
107" m3/C for pure bismuth metal. The uncertainties in measuring the
dimensions of the sample can easily account for the discrepancy.

Of course, this sample and this setup can be used to determine the
resistivity of bismuth. Outside of the magnetic field, measure the voltage
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TABLE22 Sample data, taken by a student, for the resistivity p of
bismuth as a function of temperature, using the Hall effect apparatus

T(°0) T (X) P (nS2-cm)
—80 193 70
—60 213 85
—40 233 96
—20 253 110

0 273 121
20 293 134
40 313 150
60 333 163

drop along the length £ of the bismuth sample, as a function of the applied
current, and determine the resistivity p from the ratio

E, . dV, wt

je dl ¢’

The temperature dependence of each of these quantities can be determined
by heating (and cooling) the probe, and recording values as a function of
temperature using readings from the thermocouple.

Table 2.2 lists some results for the resistivity p in (L€2-cm) as a function
of temperature. To examine the temperature dependence it is best to make
a log—log plot of the data vs T since we expect a power law dependence.
This is shown in Fig. 2.16 and when fitted gives

P X 7!,
Note that at room temperature (T = 25°C)
p=14x 107* Q-cm

in reasonable agreement with the data of Table 2.1.

Indeed, one expects a T/? dependence of the resistivity on the temper-
ature because of the following argument. From Eq. (2.14) the resistivity is
inversely proportional to the mean time between collisions, as long as the
carrier density remains constant. Now the mean time between collisions is
given by

T =A/v,
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FIGURE 2.16 The resistivity of bismuth as a function of temperature, taken with the Hall
effect apparatus (data from Table 2.2.) The data are fitted to a power law form.

where A is the mean free path for scattering, and v the thermal velocity of
the electrons. For v we can use

1 3 o
Emv2 = sz or v=+/3kT/m.

The mean free path, A, decreases as the collision cross section increases,
namely as the lattice vibrations increase with temperature. It is found that
A is inversely proportional to the temperature, and therefore

T o1/ T3
or using Eq. (2.14),
o X T3/2,

" We can also examine the temperature dependence of the Hall coeffi-
cient. In this case it is best to plot Ry on a semi-log plot vs 1/7. The
reason is that the Hall coefficient (see Eq. (2.22)) is directly inversely pro-
portional to the carrier density, and we expect the carrier density to depend
on the temperature by an exponential factor, such as for instance shown
in Eq. (2.28). The data are plotted in this way in Fig. 2.17, and we recog-
nize two distinct slopes. As expected, Ry falls with increasing temperature
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FIGURE 2.17 Measurements of the Hall coefficient as a function of temperature.

because the carrier density increases. By fitting the data to the form
n o< exp(—E /2kT),
we find for the two regions

low T, E =0.029eV
high T, E =0.120eV.

Such energy differences are typical of the excitation of impurities. It is
also relevant to note that the carrier density at room temperature is

n=1/eRy =135x%x 10" cm™>,

This is quite high and typical of a conductor.

2.4. SEMICONDUCTORS
2.4.1. General Properties of Semiconductors

We have seen in the first section how a free-electron gas behaves, and what
can be expected for the band structure of a crystalline solid. In the second
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section we applied the model of a free-electron gas to the behavior of the
resistivity of metals. In the present section we will study some properties
of semiconductors that can be verified easily in the laboratory, where we
will make use both of the free electron gas model and of the band structure
of the material. As mentioned before, a semiconductor is a crystalline
solid in which the conduction band lies close to the valence band, but is
not populated at low temperatures; semiconductors are unlike most metals
in that both electrons and holes are responsible for the properties of the
semiconductor. If the semiconductor is a pure crystal, the number of holes
(positive carriers, p) is equal to the number of free electrons (negative
carriers, n), since for each electron raised to the conduction band, a hole
is created in the valence band: these are called the intrinsic carriers. All
practically important semiconductor materials, however, have in them a
certain amount of impurities that are capable either of donating electrons
to the conduction band (making an n-type crystal) or of accepting electrons
from the valence band, thus creating holes in it (making a p-type crystal).
These impurities are called extrinsic carriers and in such crystals n # p.
Let us then first look at the energy-band picture of a semiconductor as it
is shown in Fig. 2.18; the impurities are all concentrated at a single energy
level usually lying close to, but below, the conduction band. The density
of states must be different from that of a free-electron gas (Eq. (2.4) and
Fig. 2.2a) since, for example, in the forbidden gaps it must be 0; close to
the ends of the allowed bands it varies as E1/2 and reduces to 0 on the edge.

/Conduction;
l/  band
N/
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9

Fermi |EF

i

' Normally
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of states

Density

L

Otherfilled T
bands D(E,)

FIGURE 2.18 Energy band structure of a semiconductor without impurities. On the left-
hand side the Fermi distribution for a free-electron gas is shown; on the right-hand side the
actual density of states D(E) is shown.
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On the other hand, the Fermi distribution function, Eq. (2.3), remains the
same. The only parameter in this function is the Fermi energy, whi‘ch can be
found by integrating the number of occupied states (Fermi funct1qn times
density of states) and setting it equal to the electron density. It is clear,
however, that if we are to have as many empty states in the valence band as
occupied ones in the conduction band, the Fermi level must lie exact?y in
the middle of the forbidden gap!? (because of the symmetry of the trailing
edge of the distribution). In Fig. 2.18, the density of states is shown to
the right and the Fermi distribution function to the left. We measure the
position of the Fermi level from the conduction band and define it by EF;
the exact value of Eg is

3/4
Eg my
=——=4+kThh{— . (2.24)
B TR (mz'; o

Since the Fermi level lies below the conduction band, EF is a negativi
quantity, Eg is the energy gap always taken to be positive, and m} and m;
are the effective masses of holes and electrons, respectively. If we and-wF
stand for the actual position of the conduction band and Fermi level above

the zero point energy, then
wg = we + Eg.

To find the density of electrons in the conduction band (or holes in the
valence band) we simply substitute Eq. (2.24) for wr into Eq. (2.4), multiply
by the density of states, and integrate over w from w = wc 10 +00. ‘When,
however, the exponent:

E » .
—(wp — W) ~ —2‘°’— + E > kT, (2.25)

the Fermi distribution degenerates to a Boltzmann distribution. (Here E
is the energy of the electrons as measured from the top of the conc.luctio.n
band; obviously it can take either positive or negative values.) With this
assumption the integration is easy, yielding

3/2 : 3/2 .
n = (277:m2ekT> / eEF/kT ~ (an;l’lzekT) e—Eg/ZkT; ‘ (226)
h

121f the effective masses of p- and n-type carriers are the same.
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similarly,

3 32
p= (2”";#) o~ (B +ER/AT (2_”_':;‘_“:> e~ Ee/2T (2.07)

It is interesting that the product np is independent of the position of the
Fermi level'3—especially if we take m, = my,

nlz =np = 2.31 x 1031 T3¢ Ee/*T

From the analysis we expect that as the temperature is raised, the density
of the intrinsic carriers in a semiconductor will increase at an exponential
rate characterized by E;/2kT . This temperature is usually very high since
Es ~ 0.7V (see Egs. (2.29)).

We have already mentioned that impurities determine the properties of
a semiconductor, especially at low temperatures where very few intrin-
sic carriers are populating the conduction band. These impurities, when
in their ground state, are usually concentrated in a single energy level
lying very close to the conduction band (if they are donor impurities) or
very close to the valence band (if they are acceptors). As for the intrinsic
carriers, the Fermi level for the impurity carries lies halfway between the
conduction (valence) band and the impurity level; this situation is shown in
Figs. 2.19a and 2.19b. If we make again the low temperature approximation
of Eq. (2.25), the electron density in the conduction band is given by

2mmkT \
n=Ng <——Z';—> ¢~ Ea/%T (2.28)
where Ny is the donor density and Eq4 the separation of the donor energy
level from the conduction band. In writing Eq. (2.28), however, care must
be exercised because the conditions of Eq. (2.25) are valid only for very
low temperatures. Note, for example, that for germanium

E; =07eV, andforkT =0.7eV, T= 8000 K
whereas
Eq4=001eV, andfork7 =001eV, T =120K. (2.29)

Thus at temperatures 7 = 120 K most of the donor impurities will be in the
conduction band and instead of Eq. (2.28) we will have n =~ Ng; namely,

13This result is very general and holds even without the approximation that led to
Eqgs. (2.26) and (2.27).
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FIGURE 2.19 Same as described in the legend to Fig. 2.18 but with the addition of
impurities. (a) The impurities are of the donor type and lie at an energy slightly below
the conduction band. (b) The impurities are of the acceptor type and lie slightly above the

valence band. Note the shift of the Fermi level as indicated by the dotted line.

the density of impurity carriers becomes saturated. Once saturation has
been reached the impurity carriers in the conduction band behave like the
free electrons of a metal. '

2.4.2. Sketch of p—n Semiconductor Junction Theory

Semiconductor materials with high impurity concentration, when properly
combined, form a transistor. Junction transistors consist of two junctions of
dissimilar-type semiconductors, one p type and one n type; the intermediate
region, the base, is usually made very thin. We will briefly sketch the
behavior of such a p—n junction and then see how the combination of
two junctions can provide power amplification; for this we will use our
knowledge of the band structure of semiconductors and the position of
the Fermi level, as developed previously (Figs. 2.18 and 2.19). When two
materials with dissimilar band structure are joined, it is important to know
at what relative energy level one band diagram lies with respect to the
other: the answer is that the Fermi levels of both materials must be at the
same energy position when no external fields are applied; this is shown
in Fig. 2.20.

From the energy diagram of Fig. 2.20, it follows that only electrons with
E. > AW, will be able to cross the junction from the » material into the p
region and only holes with E; > AWj, from the p region into the n region.




