L ——

i

Inside Dielectrices

11-1 Molecular dipoles

In this chapter we are going to discuss why it is that materials are dielectric.
We said in the last chapter that we could understand the properties of electrical
systems with dielectrics once we appreciated that when an electric field is applied
-0 a dielectric it induces a dipole moment in the atoms. Specifically, if the electric
~eld E induces an average dipole moment per unit volume P, then «, the dielectric
-onstant, is given by

P

k=1 =—"
EoE

(11.1)

We have already discussed how this equation is applied; now we have to dis-
cuss the mechanism by which polarization arises when there is an electric field
‘nside a material. We begin with the simplest possible example—the polarization
2T gases. But even gases already have complications: there are two types. The
molecules of some gases, like oxygen, which has a symmetric pair of atoms in each
molecule, have no inherent dipole moment. But the molecules of others, like water
capor (which has a nonsymmetric arrangement of hydrogen and oxygen atoms)
-arry a permanent electric dipole moment. As we pointed out in Chapters 6 and 7,
“here is in the water vapor molecule an average plus charge on the hydrogen
=toms and a negative charge on the oxygen. Since the center of gravity of the nega-
“ve charge and the center of gravity of the positive charge do not coincide, the
sotal charge distribution of the molecule has a dipole moment. Such a molecule is
-zlled a polar molecule. In oxygen, because of the symmetry of the molecule, the
centers of gravity of the positive and negative charges are the same, so it is a
:onpolar molecule. It does, however, become a dipole when placed in an electric
“eld. The forms of the two types of molecules are sketched in Fig. 11-1.

11-2 Electronic polarization

We will first discuss the polarization of nonpolar molecules. We can start with
“he simplest case of a monatomic gas (for instance, helium). When an atom of
cuch a gas is in an electric field, the electrons are pulled one way by the field while
“he nucleus is pulled the other way, as shown in Fig. 10-4. Although the atoms are
ery stiff with respect to the electrical forces we can apply experimentally, there is a
<light net displacement of the centers of charge, and a dipole moment is induced.
“or small fields, the amount of displacement, and so also the dipole moment, is
sroportional to the electric field. The displacement of the electron distribution
vhich produces this kind of induced dipole moment is called electronic polarization.
We have already discussed the influence of an electric field on an atom in
Chapter 31 of Vol. I, when we were dealing with the theory of the index of refrac-
“ion. If you think about it for a moment, you will see that what we must do now is
=xactly the same as we did then. But now we need worry only about fields that do
not vary with time, while the index of refraction depended on time-varying fields.
In Chapter 31 of Vol. I we supposed that when an atom is placed in an oscilla-
ring electric field the center of charge of the electrons obeys the equation
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The first term is the electron mass times its acceleration and the second is a restoring
force, while the right-hand side is the force from the outside electric field. If the
electric field varies with the frequency w, Eq. (11.2) has the solution

9.E
m(wg — »?)’

(11.3)

which has a resonance at w = w,. When we previously found this solution, we
interpreted it as saying that w, was the frequency at which light (in the optical
region or in the ultraviolet, depending on the atom) was absorbed. For our
purposes, however, we are interested only in the case of constant fields, i.e., for
w = 0, so we can disregard the acceleration term in (11.2), and we find that the
displacement is

_ qeb; . (11.4
mw?
From this we see that the dipole moment p of a single atom is
2
= gx = ZE 5
P = gex = me? (11.5

In this theory the dipole moment p is indeed proportional to the electric field.
People usually write
p = aeoE. (11.6

(Again the € is put in for historical reasons.) The constant « is called the polariz-
ability of the atom, and has the dimensions L3. It is a measure of how easy it is t-
induce a moment in an atom with an electric field. Comparing (11.5) and (11.6.
our simple theory says that
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If there are &V atoms in a unit volume, the polarization P—the dipole momer:
per unit volume—is given by

P = Np = Nag,E. (11.8

Putting (11.1) and (11.8) together, we get

P )

or, using (11.7),
47 Ne® ;
Kk— 1= e 2 (11.1¢C

0

From Eq. (11.9) we would predict that the dielectric constant « of differen
gases should depend on the density of the gas and on the frequency w of its opticz
absorption.

Our formula is, of course, only a very rough approximation, because in Ec
(11.2) we have taken a model which ignores the complications of quantum me-
chanics. For example, we have assumed that an atom has only one resona-
frequency, when it really has many. To calculate properly the polarizability « =
atoms we must use the complete quantum-mechanical theory, but the classicz
ideas above give us a reasonable estimate.

Let’s see if we can get the right order of magnitude for the dielectric constz=
of some substance. Suppose we try hydrogen. We have once estimated (Chap:z
38, Vol. I) that the energy needed to ionize the hydrogen atom should be appros -
mately
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. .- =stimate of the natural frequency w,, we can set this energy equal to fiwe—
==rgy of an atomic oscillator whose natural frequency is wo. We get

Nlme4
Wo = 3 gE

;‘uunv‘ = ~ow use this value of wo in Eq. (11.7), we find for the electronic polarizability

2 713
o~ 167[L] : (11.12)

me?

Mke quantity (h2/me?) is the radius of the ground-state orbit of a Bohr atom (see

.~-=r 38, Vol. I) and equals 0.528 angstroms. In a gas at standard pressure and
~~erature (1 atmosphere, 0°C) there are 2.69 X 10'° atoms/cm?, so Eq. (11.9)

k = 1+ (2.69 X 1019167 (0.528 X 107832 = 1.00020. (11.13)
The dielectric constant for hydrogen gas is measured to be
Kexp = 1.00026.

% - <=2 that our theory is about right. We should not expect any better, because
. measurements were, of course, made with normal hydrogen gas, which has
.- ~mic molecules, not single atoms. We should not be surprised if the polariza-
.~ of the atoms in a molecule is not quite the same as that of the separate atoms.
.- molecular effect, however, is not really that large. An exact quantum-
~-hanical calculation of « for hydrb’%én atoms gives a result about 129, higher
\2 (11.12) (the 167 is changed to 187), and therefore predicts a dielectric constant
. —=what closer to the observed one. In any case, it is clear that our model of a
L=lectric is fairly good. ’

Another check on our theory is to try Eq. (11.12) on atoms which have a
.zmer frequency of excitation. For instance, it takes about 24.5 volts to pull the
--ron off helium, compared with the 13.5 volts required to ionize hydrogen.
W = would, therefore, expect that the absorption frequency wo for helium would be
~out twice as big as for hydrogen and that « would be one-quarter as large. We
=spect that

Khelium =~ 1000050
= «perimentally,
Kheliun = 1.000068,

.~ vou see that our rough estimates are coming out on the right track. So we have
—erstood the dielectric constant of nonpolar gas, but only qualitatively, because
+= have not yet used a correct atomic theory of the motions of the atomic electrons.

11-3 Polar molecules; orientation polarization

Next we will consider a molecule which carries a permanent dipole moment
- _such as a water molecule. With no electric field, the individual dipoles point
- random directions, so the net moment per unit volume is zero. But when an
-i=ctric field is applied, two things happen: First, there is an extra dipole moment
~duced because of the forces on the electrons; this part gives just the same kind of
-lectronic polarizability we found for a nonpolar molecule. For very accurate
~ork, this effect should, of course, be included, but we will neglect it for the
—oment. (It can always be added in at the end.) Second, the electric field tends to
‘ne up the individual dipoles to produce a net moment per unit volume. If all the
Zipoles in a gas were to line up, there would be a very large polarization, but that
ioes not happen. At ordinary temperatures and electric fields the collisions of the
—olecules in their thermal motion keep them from lining up very much. But there
s some net alignment, and so some polarization (see Fig. 11-2). The polarization
“hat does occur can be computed by the methods of statistical mechanics we
sescribed in Chapter 40 of Vol. L. X
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Fig. 11-2. (a) In a gas of polar
molecules, the individual moments are
oriented at random; the average moment
in a small volume is zero. (b) When there
is an electric field, there is some average
alignment of the molecules.




To use this method we need to know the energy of a dipole in an electric field.
Consider a dipole of moment p, in an electric field, as shown in Fig. 11-3. The
energy of the positive charge is g¢(1), and the energy of the negative charge is
—4q9(2). Thus the energy of the dipole is

U= qg¢(l) — qp(2) = gd - Vo, |
or

U= —poE = —poEcos?, (11.14)

(1
+q

) where 6 is the angle between p, and E. As we would expect, the energy is lower
d when the dipoles are lined up with the field.

We now find out how much lining up occurs by using the methods of statis-
tical mechanics. We found in Chapter 40 of Vol. I that in a state of thermal equili-
brium, the relative number of molecules with the potential energy U is proportional
Fig. 11-3. The energy of a dipole to ‘
po in the field Eis —pg * E. vl (11.1%)

~q4%2

where U(x, y, z) is the potential energy as a function of position. The same argu-
ments would say that using Eq. (11.14) for the potential energy as a function of
angle, the number of molecules at 0 per unit solid angle is proportional to e~ V/**.

Letting n(8) be the number of molecules per unit solid angle at 6, we have

n(f) = ngetPoFeost/kT (11.16

For normal temperatures and fields, the exponent is small, so we can approximate
by expanding the exponential: \

n(6) = nq <1 + EQE;(CTOS")- ~ (1117

We can find n, if we integrate (11.17) over all angles; the result should be jus:
N, the total number of molecules per unit volume. The average value of cos § over

all angles is zero, so the integral is just n times the total solid angle 4m. We gz

[
N

::ﬂr' (111:

o
We see from (11.17) that there will besmore molecules oriented along the fie'-
(cos @ = 1) than against the field (cos § = —1). So in any small volume contai=-
ing many molecules there will be a net dipole moment per unit volume—that :
a polarization P. To calculate P, we want the vector sum of all the moleculz-
moments in a unit volume. Since we know that the result is going to be in =z
direction of E, we will just sum the components in that direction (the componernt:
| at right angles to E will sum to zero):

P = Z Do COS 0;.

unit
volume

We can evaluate the sum by integrating over the angular distribution. T==
solid angle at 6 is 27 sin 6 df, so

P =/ n(@)py cos 02 sin 6 d6. (11.18
0

Substituting for n(8) from (11.17), we have ‘

_ N1 4 peE
P = 5/, <1 + T ©o8 0>p0 cos 0 d(cos 9),

which is easily integrated to give

_ NpiE
P= =
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The polarization is proportional to the field E, so there will be normal dielectric

behavior. Also, as we expect, the polarization depends inversely on the tempera-

ture, because at higher temperatures there is more disalignment by collisions. This

1/T dependence is called Curie’s law. The permanent moment po appears squared

for the following reason: In a given electric field, the aligning force depends upon

Do, and the mean moment that is produced by the lining up is again proportional T

to po. The average induced moment is proportional to p3. K= /
We should now try to see how well Eq. (11.20) agrees with experiment. Let’s 0004

look at the case of steam. Since we don’t know what p is, we cannot compute P -'/

directly, but Eq. (11.20) does predict that k — 1 should vary inversely as the tem- ¥

perature, and this we should check. #
From (11.20) we get 0003+ / —

P Npi /

k— 1= EO—E = 360kT: . (1121)

I
+
I

so k — 1 should vary in direct proportion to the density ~, and inversely as the  ¢.002 _

absolute temperature. The dielectric constant has been measured at several

different pressures and temperatures, chosen such that the number of molecules in /

a unit volume remained fixed.* [Notice that if the measurements had all been /

taken at constant pressure, the number of molecules per unit volume would  gpo)- / ]

decrease linearly with increasing temperature and « — 1 would vary as 72

instead of as 77 1.] In Fig. 11-4 we plot the experimental observations for k — 1 /

as a function of 1/T. The dependence predicted by (11.21) is followed quite well.
There is another characteristic of the dielectric constant of polar molecules— Y I L

its variation with the frequency of the applied field. Due to the moment of inertia ° 0001 o s

of the molecules, it takes a certain amount of time for the heavy molecules to turn /T (K™

toward the direction of the field. So if we apply frequencies in the high microwave

region or above, the polar contribution to the dielectric constant begins to fall

away because the molecules cannot follow. In contrast to this, the electronic

polarizability still remains the same up to optical frequencies, because of the

smaller inertia in the electrons.

Fig. 11-4. Experimental  measure-
ments of the dielectric constant of water
vapor at various temperatures.

11-4 FElectric fields in cavities of a dielectric

We now turn to an interesting but complicated question—the problem of the
dielectric constant in dense materials. Suppose that we take liquid helium or
liquid argon or some other nonpolar material. We still expect electronic polari-
zation. But in a dense material, P can be large, so the field on an individual atom
will be influenced by the polarization of the atoms in its close neighborhood. The
question is, what electric field acts on the individual atom?

Imagine that the liquid is put between the plates of a condenser. If the plates
are charged they will produce an electric field in the liquid. But there are also
charges in the individual atoms, and the total field E is the sum of both of these
effects. This true electric field varies very, very rapidly from point to point in the
liquid. It is very high inside the atoms—particularly right next to the nucleus—and
relatively small between the atoms. The potential difference between the plates is
the line integral of this total field. If we ignore all the fine-grained variations, we
can think of an average electric field E, which is just V/d. (This is the field we were
using in the last chapter.) We should think of this field- as the average over a space
containing many atoms.

Now you might think that an “average” atom in an “‘average” location would
feel this average field. But it is not that simple, as we can show by considering what Fig. 11=5. The field in a slot cut in a
happens if we imagine different-shaped holes in a dielectric. For instance, suppose dielectric depends on the shape and
that we cut a slot in a polarized dielectric, with the slot oriented parallel to the  orientation of the slot.
field, as shown in part (a) of Fig. 11-5. Since we know that v X E = 0, the line
integral of E around the curve, T', which goes as shown in (b) of the figure, should

* Sénger, Steiger, and Géchter, Helvetica Physica Acta 5, 200 (1932).
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Fig. 11-7. The electric field of a
uniformly polarized sphere.

be zero. The field inside the slot must give a contribution which just cancels the
part from the field outside. Therefore the field E, actually found in the center of
a long thin slot is equal to E, the average electric field found in the dielectric.

Now consider another slot whose large sides are perpendicular to E, as shown
in part (c) of Fig. 11-5. In this case, the field E in the slot is not the same as E
because polarization charges appear on the surfaces. If we apply Gauss’ law to
a surface S drawn as in (d) of the figure, we find that the field E, in the slot is
given by

Ey=E+ e%, (11.22)

where E is again the electric field in the dielectric. (The gaussian surface contains
the surface polarization charge o,,1 = P.) We mentioned in Chapter 10 that
€oE + P is often called D, so €gEq = Dy is equal to D in the dielectric.

Earlier in the history of physics, when it was supposed to be very important
to define every quantity by direct experiment, people were delighted to discover
that they could define what they meant by E and D in a dielectric without havinz
to crawl around between the atoms. The average field E is numerically equal tc
the field E that would be measured in a slot cut parallel to the field. And the ficlc
D could be measured by finding E, in a slot cut normal to the field. But noboc;
ever measures them that way anyway, so it was just one of those philosophicz
things.

in a dielectric can be considered as the
sum of the field in a spherical hole plus
the field due to a spherical plug.

7 a Fig. 11-6. The field at any point A

For most liquids which are not too complicated in structure, we could expe:
that an atom finds itself, on the average, surrounded by the other atoms in wha
would be a good approximQtion to a spherical hole. And so we should ask: “W&=z
would be the field in a spherical hole?” We can find out by noticing that it w=
imagine carving out a spherical hole in a uniformly polarized material, we are ;=
removing a sphere of polarized material. (We must imagine that the polarizat s
is “frozen in” before we cut out the hole.) By superposition, however, the fiz
inside the dielectric, before the sphere was removed, is the sum of the fields =om
all charges outside the spherical volume plus the fields from the charges within “u
polarized sphere. That is, if we call E the field in the uniform dielectric, we s
write

E = Epoe + Eplugs (1133

where Ey. is the field in the hole and E,,, is the field inside a sphere whizr &
uniformly polarized (see Fig. 11-6). The fields due to a uniformly polarized sprem

value is

Using (11.23), we get

P k-
Ehole = E + 3—EE # il

The field in a spherical cavity is greater than the average field by the ==
P/3€q. (The spherical hole gives a field 1/3 of the way between a slot parz = &
the field and a slot perpendicular to the field.)

11-5 The dielectric constant of liquids; the Clausius-Mossotti equation

In a liquid we expect that the field which will polarize an individual = == &
more like Epoje than just E. If we use the Eyo1, of (11.25) for the polarizinz ==

11-6
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Eq. (11.6), then Eq. (11.8) becomes

P= Naeo<E+ P>, (11.26)
360
or
Na
Remembering that x — 1 is just P/eqE, we have
Na

which gives us the dielectric constant of a liquid in terms of «, the atomic polar-
izability. This is called the Clausius-Mossotti equation.

Whenever Ne is very small, as it is for a gas (because the density N is small),
then the term Na/3 can be neglected compared with 1, and we get our old result,
Eq. (11.9), that

! Kk — 1 = Na. (11.29)

Let’s compare Eq. (11.28) with some experimental results. It is first necessary
to look at gases for which, using the measurement of k, we can find o from Eq.
(11.29). For instance, for carbon disulfide at zero degrees centigrade the dielectric
constant is 1.0029, so Neis 0.0029. Now the density of the gas is easily worked out
and the density of the liquid can be found in handbooks. At 20°C, the density of
liquid CS, is 381 times higher than the density of the gas at 0°C. This means that
N is 381 times higher in the liquid than it is in the gas so, that—if we make the
approximation that the basic atomic polarizability of the carbon disulfide doesn’t
change when it is condensed into a liquid—MNe in the liquid is equal to 381 times
0.0029, or 1.11. Notice that the Na/3 term amounts to almost 0.4, so it is quite
significant. With these numbers we predict a dielectric constant of 2.76, which
agrees reasonably well with the observed value of 2.64.

In Table 11-1 we give some experimental data on various materials (taken
from the Handbook of Chemistry and Physics), together with the dielectric constants
calculated from Eq. (11.28) in the way just described. The agreement between
observation and theory is even better for argon and oxygen than for CSy—and
not so good for carbon tetrachloride. On the whole, the results show that Eq.
(11.28) works very well.

Table 11-1

Computation of the dielectric constants of liquids
from the dielectric constant of the gas.

Gas Liquid
Substance k (exp) No l Density Density Ratio* Na k (predict) k (exp)
CS» 1.0029 0.0029 0.00339 1.293 381 1.11 2.76 2.64
Oy 1.000523 0.000523 0.00143 1.19 832 0.435 1.509 ‘ 1.507
CCly 1.0030 0.0030 0.00489 1.59 325 0.977 2.45 | 224
A | 1.000545 0.000545 0.00178 1.44 810 0.441 | 1.517 ‘ 1.54

* Ratio = density of liquid/density of gas.

Our derivation of Eq. (11.28) is valid only for electronic polarization in liquids.
It is not right for a polar molecule like HyO. If we go through the same calcu-
lations for water, we get 13.2 for Na, which means that the dielectric constant for
the liquid is negative, while the observed value of « is 80. The problem has to do
with the correct treatment of the permanent dipoles, and Onsager has pointed out
the right way to go. We do not have the time to treat the case now, but if you are
interested it is discussed in Kittel’s book, Introduction to Solid State Physics.

11-7



11-6 Solid dielectrics

Now we turn to the solids. The first interesting fact about solids is that there
can be a permanent polarization built in—which exists even without applying an
electric field. An example occurs with a material like wax, which contains long
molecules having a permanent dipole moment. If you melt some wax and put a
strong electric field on it when it is a liquid, so that the dipole moments get partly
lined up, they will stay that way when the liquid freezes. The solid material will
have a permanent polarization which remains when the field is removed. Such a
solid is called an electret.

! | . | , An electret has permanent polarization charges on its surface. Itis the electrical
! ! ! ! ! analog of a magnet. It is not as useful, though, because free charges from the air
are attracted to its surfaces, eventually cancelling the polarization charges. The
electret is “discharged” and there are no visible external fields.
- A permanent internal polarization P is also found occurring naturally in some
crystalline substances. In such crystals, each unit cell of the lattice has an identical
permanent dipole moment, as drawn in Fig. 11-8. All the dipoles point in the same
direction, even with no applied electric field. Many complicated crystals have, in
fact, such a polarization; we do not normally notice it because the external fields
- are discharged, just as for the electrets.
If these internal dipole moments of a crystal are changed, however, external
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70|00 |00 |90 | 90 fields appear because there is not time for stray charges to gather and cancel the

T | | T polarization charges. If the dielectric is in a condenser, free charges will be induced
[ ! ’ ' ' on the electrodes. For example, the moments can change when a dielectric is
heated, because of thermal expansion. The effect is called pyroelectricity. Similarly,
Fig. 11-8. A complex crystal lattice if we change the stresses in a crystal—for instance, if we bend it—again the mo-
can have a permanent intrinsic polariza-  ment may change a little bit, and a small electrical effect, called piezoelectricity.
ok can be detected.
For crystals that do not have a permanent moment, one can work out a theory
of the dielectric constant that involves the electronic polarizability of the atoms.
It goes much the same as for liquids. Some crystals also have rotatable dipoles
inside, and the rotation of these dipoles will also contribute to . In ionic crystals
such as NaCl there is also ionic polarizability. The crystal consists of a checkerboard
of positive and negative ions, and in an electric field the positive ions are pulled
one way and the negatives the other; there is a net relative motion of the plus and
minus charges, and so a volume polarization. We could estimate the magnitude
of the ionic polarizability from our knowledge of the stiffness of salt crystals, but
we will not go into that subject here.

11-7 Ferroelectricity; BaTiO4

We want to describe now one special class of crystals which have, just by
accident almost, a built-in permanent moment. The situation is so marginal that
if we increase the temperature a little bit they lose the permanent moment com-
pletely. On the other hand, if they are nearly cubic crystals, so that their moments
can be turned in different directions, we can detect a large change in the moment
when an applied electric field is changed. All the moments flip over and we get a
large effect. Substances which have this kind of permanent moment are called
Jerroelectric, after the corresponding ferromagnetic effects which were first dis-
covered in iron.

We would like to explain how ferroelectricity works by describing a particular
example of a ferroelectric material. There are several ways in which the ferro- |
electric property can originate; but we will take up only one mysterious case—that
of barium titanate, BaTiOg. This material has a crystal lattice whose basic cell is
sketched in Fig. 11-9. It turns out that above a certain temperature, specifically

®Ti+4 O Bgt*2 @ 02

By 11-9. The wiit cell of BaTiOs. 118°C, barium titanate is an ordinary dielectric with an enormous dielectric con- ‘
T w2 really fill up most of the space; stant. Below this temperature, however, it suddenly takes on a permanent moment. 1
- =rity, only the positions of their In working out the polarization of solid material, we must first find what are
mmmzs are shown, the local fields in each unit cell. We must include the fields from the polarization
11-8
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itself, just as we did for the case of a liquid. But a crystal is not a homogeneous
liquid, so we cannot use for the local field what we would get in a spherical hole.
If you work it out for a crystal, you find that the factor 1/3 in Eq. (11.24) becomes
slightly different, but not far from 1/3. (For a simple cubic crystal, it is just 1/3.)
We will, therefore, assume for our preliminary discussion that the factor is 1/3
for BaTiO3.

Now when we wrote Eq. (11.28) you may have wondered what would happen
if Na became greater than 3. It appears as though « would become negative. But
that surely cannot be right. Let’s see what should happen if we were gradually to
increase « in a particular crystal. As « gets larger, the polarization gets bigger,
making a bigger local field. But a bigger local field will polarize each atom more,
raising the local fields still more. If the “give” of the atoms is enough, the process
keeps going; there is a kind of feedback that causes the polarization to increase
without limit—assuming that the polarization of each atom increases in proportion
to the field. The “runaway” condition occurs when Ne = 3. The polarization
does not become infinite, of course, because the proportionality between the in-
" duced moment and the electric field breaks down at high fields, so that our formulas
are no longer correct. What happens is that the lattice gets “locked in” with a high,
self-generated, internal polarization.

In the case of BaTiOg, there is, in addition to an electronic polarization, also
a rather large ionic polarization, presumed to be due to titanium ions which can
move a little within the cubic lattice. The lattice resists large motions, so after the
titanium has gone a little way, it jams up and stops. But the crystal cell is then left
with a permanent dipole moment.

In most crystals, this is really the situation for all temperatures that can be
reached. The very interesting thing about barium titanate is that there is such a
delicate condition that if Ne is decreased just a little bit it comes unstuck. Since
N decreases with increasing temperature—because of thermal expansion—we can
vary Na by varying the temperature. Below the critical temperature it is just
barely stuck, so it is easy—by applying an external field—to shift the polarization
and have it lock in a different direction.

Let’s see if we can analyze what happens in more detail. We call T, the critical
temperature at which Ne is exactly 3. As the temperature increases, N goes down a
little bit because of the expansion of the lattice. Since the expansion is small, we
can say that near the critical temperature

Na = § = 8T = T3 (11.30)

where 8 is a small constant, of the same order of magnitude as the thermal expansion
coefficient, or about 107° to 1079 per degree C. Now if we substitute this relation
into Eq. (11.28), we get that

=2 BT =T,
BT — T.)/3

Since we have assumed that 8(T — T.) is small compared with one, we can ap-
proximate this formula by

9

=BT =T, (11.31)

Kk — 1
This relation is right, of course, only for 7 > T.. We see that just above the
critical temperature k is enormous. Because Ne is so close to 3, there is a tremen-
dous magnification effect, and the dielectric constant can easily be as high as 50,000
to 100,000. It is also very sensitive to temperature. For increases in temperature,
the dielectric constant goes down inversely as the temperature, but, unlike the case
of a dipolar gas, for which k — 1 goes inversely as the absolute temperature, for
ferroelectrics it varies inversely as the difference between the absolute temperature
and the critical temperature (this law is called the Curie-Weiss law).
When we lower the temperature to the critical temperature, what happens?
If we imagine a lattice of unit cells like that in Fig. 11-9, we see that it is possible
11-9
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Fig. 11-10. Models of a ferroelec-

tric: (a) corresponds to an antiferro-
electric, and (b) to a normal ferroelectric.

to pick out chains of ions along vertical lines. One of them consists of alternating
oxygen and titanium ions. There are other lines made up of either barium or
oxygen ions, but the spacing along these lines is greater. We make a simple model
to imitate this situation by imagining, as shown in Fig. 11-10(a), a series of chains
of ions. Along what we call the main chain, the separation of the ions is a, which
is half the lattice constant; the lateral distance between identical chains is 2a.
There are less-dense chains in between which we will ignore for the moment. To
make the analysis a little easier, we will also suppose that all the ions on the main
chain are identical. (It is not a serious simplification because all the important
effects will still appear. This is one of the tricks of theoretical physics. One does
a different problem because it is easier to figure out the first time—then when one
understands how the thing works, it is time to put in all the complications.)

Now let’s try to find out what would happen with our model. We suppose that
the dipole moment of each atom is p and we wish to calculate the field at one o
the atoms of the chain. We must find the sum of the fields from all the other atoms
We will first calculate the field from the dipoles in only one vertical chain; we wil
talk about the other chains later. The field at the distance r from a dipole in =
direction along its axis is given by

L 2p, (11.32

At any given atom, the dipoles at equal distances above and below it give fields iz
the same direction, so for the whole chain we get

oo 2242 2y 2y )20
Echam_4ﬂ_60a3 2+8+27+64+ : _60 23 (11.

It is not too hard to show that if our model were like a completely cubic crystz—
that is, if the next identical lines were only the distance a away—the number 0.2
would be changed to 1/3. In other words, if the next lines were at the distancs
they would contribute only —0.050 unit to our sum. However, the next must
chain we are considering is at the distance 2a and, as you remember from Chapizr =
the field from a periodic structure dies off exponentially with distance. There
these lines contribute much less than —0.050 and we can just ignore all the ctne
chains.

It is necessary now to find out what polarizability o is needed to maks
runaway process work. Suppose that the induced moment p of each atom o
chain is proportional to the field on it, as in Eq. (11.6). We get the polarizinz T
on the atom from E.pain, Using Eq. (11.32). So we have the two equations

P = anEchain
and
0383 p

Echain = P E_O

There are two solutions: E and p both zero, or

a3

“ = 0383’

with E and p both finite. Thus if « is as large as a®/0.383, a permanent po’== =
sustained by its own field will set in. This critical equality must be rezcner s
barium titanate at just the temperature 7,.. (Notice that if o were larger “ron &
critical value for small fields, it would decrease at larger fields and at e s
the same equality we have found would hold.) ‘
For BaTiO3, the spacing a is 2 X 107® cm, so we must expect =
21.8 X 1072* cm?®. We can compare this with the known polarizabii= =
individual atoms. For oxygen, & = 30.2 X 1072*cm?®; we’re on the rz
But for titanium, & = 2.4 X 1072% cm?;rather small. To use our mods. »= W
probably take the average. (We could work out the chain again for =izl :

11-10

TR




Qi

atoms, but the result would be about the same.) So a(average) = 16.3 X 10™24,
which is not high enough to give a permanent polarization.

But wait a moment! We have so far only added up the electronic polariz-
abilities. There is also some ionic polarization due to the motion of the titanium
ion. All we need is an ionic polarizability of 9.2 X 1072#cm?. (A more precise
computation using alternating atoms shows that actually 11.9 X 10~2%is needed.)
To understand the properties of BaTiO3, we have to assume that such an ionic
polarizability exists.

Why the titanium ion in barium titanate should have that much ionic polar-
izability is not known. Furthermore, why, at a lower temperature, it polarizes along
the cube diagonal and the face diagonal equally well is not clear. If we figure out
the actual size of the spheres in Fig. 11-9, and ask whether the titanium is a little
bit loose in the box formed by its neighboring oxygen atoms—which is what you
would hope, so that it could be easily shifted—you find quite the contrary. It fits
very tightly. The barium atoms are slightly loose, but if you let them be the ones
that move, it doesn’t work out. So you see that the subject is really not one-hundred
percent clear; there are still mysteries we would like to understand.

Returning to our simple model of Fig. 11-10(a), we see that the field from one
chain would tend to polarize the neighboring chain in the opposite direction, which
means that although each chain would be locked, there would be no net permanent
moment per unit volume! (Although there would be no external electric effects,
there are still certain thermodynamic effects one could observe.) Such systems exist,
and are called antiferroelectric. So what we have explained is really an anti-
ferroelectric. Barium titanate, however, is really like the arrangement in Fig.
11-10(b). The oxygen-titanium chains are all polarized in the same direction
because there are intermediate chains of atoms in between. Although the atoms
in these chains are not very polarizable, or very dense, they will be somewhat
polarized, in the direction antiparallel to the oxygen-titanium chains. The small
fields produced at the next oxygen-titanium chain will get it started parallel to the
first. So BaTiOj is really ferroelectric, and it is because of the atoms in between.
You may be wondering: “But what about the direct effect between the two O-Ti
chains?” Remember, though, the direct effect dies off exponentially with the
separation; the effect of the chain of strong dipoles at 2a can be less than the effect
of a chain of weak ones at the distance a.

This completes our rather detailed report on our present understanding of the
dielectric constants of gases, of liquids, and of solids.
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