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FERROELECTRICITY

The most stable structure of some crystals is nonpyroelectric above a certain tem-
perature T, (known as the Curie temperature) and pyroelectric below it.>% Such
crystals (examples are given in Table 27.4) are called ferroelectrics.** The transition
from the unpolarized to the pyroelectric state is called first order if it is discontinuous
(ie.. if P acquires a nonzero value immediately below T,) and second or higher order,
if it is continuous (i.c.. if P grows continuously from zero as T drops below T,).**

Just below the Curie temperature (for a continuous ferroelectric transition) the
distortion of the primitive cell from the unpolarized configuration will be very small,
and it is therefore possible, by applying an electric field opposite to this small polariza-
tion, to diminish and even reverse it. As T drops farther below T, the distortion of
the cell increases, and very much stronger fields are required to reverse the direction
of P. This is sometimes taken as the essential attribute of ferroelectrics, which are
then defined as pyroelectric crystals whose polarization can be reversed by applying
a strong electric field. This is done to include those crystals one feels would satisfy
the first definition (existence of a Curie temperature), except that they melt before
the conjectured Curie temperature can be reached. Well below the Curie temperature,
however, the reversal of polarization may require so drastic a restructuring of the
crystal as to be impossible even in the strongest attainable fields.

Immediately below the Curie temperature of a continuous ferroelectric transition,
the crystal spontaneously and continuously distorts to a polarized state. One would
therefore expect the dielectric constant to be anomalously large in the neighborhood
of T, reflecting the fact that it requires very little applied field to alter substantially
the displacement polarization of the crystal. Dielectric constants as large as 10° have
been observed near ferroelectric transition points. In an ideal experiment the dielectric
constant should actually become infinite precisely at T.. For a continuous transition
this simply expresses the fact that as T is approached from above, the net restoring
force opposing a lattice distortion from the unpolarized to the polarized phase
vanishes.

If the restoring force opposing a particular lattice distortion vanishes, there should
be a zero-frequency normal mode whose polarization vectors describe precisely this
distortion. Since the distortion leads to a net dipole moment and therefore involves
a relative displacement between ions of opposite charge, the mode will be an optical
mode. In the vicinity of the transition, relative displacements will be large, anharmonic
terms will be substantial, and this “soft” mode should be rather strongly damped.

These two observations (infinite static dielectric constant and a zero-frequency
optical mode) are not independent. One implies the other by the Lyddane-Sachs-
Teller relation (27.67), which requires the transverse optical-mode frequency to vanish
whenever the static dielectric constant is infinite.

30 Transitions back and forth are also known: e.g., there can be a range of temperatures for the
pyroelectric phase, above and below which the crystal is unpolarized.

31 The name stresses the analogy with ferromagnetic materials, which have a net magnetic moment.
It is not meant to suggest that iron has any special relation to the phenomenon.

32 Sometimes the term “ferroelectric” is reserved for crystals in w hich the transition is second order.
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Perhaps the simplest type of ferroelectric crystal (and the one most widely studied)
is the perovskite structure, shown in Figure 27.10. Other ferroelectrics tend to be
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>rtain tem- substantially more complex. Some characteristic examples are given in Table 27.4.
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restoring o Lead titanate PbTiO, 763 >50 300
ed phase Cadmium titanate CdTiO, 55 — —

Potassium niobate KNbO; 708 30.0 593
re should , 2971
5 s ®)
isely this Rochelle salt NaKC,H,O¢ - 4D,0 {255} 0.25 278
mnvolves ' 3081 5
n optical Deuterated Rochelle salt  NaKC,H,D,Oq - 4D,0 251 0.35 279
armonic
damped. | ¢ Has upper and lower T..
equency Source: F. Jona and G. Shirane, Ferroelectric Crystals. Pergamon, New York, 1962, p. 389.
e-Sachs-
e | PROBLEMS
es for the . 1. Electric Field of a Neutral Uniformly Polarized Sphere of Radius a

Far from the sphere, the potential ¢ will be that of a point dipole of moment p = 4nPa*/3:
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(where the polar axis is along P). Using the fact that the general solution to V2¢ = 0 proportional

to cos 0 1s

1'2

20080 o (27.81)

use the boundary conditions at the surface of the sphere to show that the potential inside the
sphere leads to a uniform field E = —4nP/3.

2. Electric Field of an Array of Identical Dipoles with Identical Ovientations,
at a Point with Respect to Which the Array Has Cubic Symmetry
The potential at r due to the dipole at r'is

1
¢p=-p'Vi— (27.82)
= |
By applying the restrictions of cubic symmetry to the tensor
‘1 .
vV, —— ;
Z: o Yy |r = r/|’ (27.83)

and noting that V*(1/r) = 0, 1 # 0, show that E(r) must vanish, when the positions r’ of the
dipoles have cubic symmetry about r. ‘
3. Polarizability of a Single Hydrogen Atom

Suppose an electric field E is applied (along the x-axis) to a hydrogen atom in its ground state

with wave function

Yo oC g "4, (27.84)
(a) Assume a trial function for the atom in the field of the form
Voo ol + 9x) = Yo + OV, \ (27.85)

and determine y by minimizing the total energy.
(b) Calculate the polarization

p= Jdr (—e) x (Yo OY* + ¥ oV). (27.86)

using the best trial function, and show that this leads to a polarizability « = 4a,>. (The exact

answer is 4.5a,°.)

4. Orientational Polarization
The following situation sometimes arises in pure solids and liquids whose molecules have per-

manent dipole moments (such as water or ammonia) and also in solids such as ionic crystals with
some ions replaced by others with permanent moments (such as OH™ in KCI).

(a) An electric field tends to align such molecules; thermal disorder favors misalignment.
Using equilibrium statistical mechanics, write down the probability that the dipole makes an
angle in the range from 0 to 6 + 40 with the applied field. If there are N such dipoles of moment
p, show that their total dipole moment in thermal equilibrium is

E
Np¢cos 05 = NpL <p—> 27.87)
g T

where L(x), the “Lang®

(b) Typical dipole
field of order 10* volt
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Suppose that the d=
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il where L(x), the “Langevin function,” is given by

N L(x) = coth x — <§> (27.88)
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81)
he (b) Typical dipole moments are of order 1 Debye unit (108 in esu). Show that for an electric
field of order 10* volts/cm the polarizability at room temperature can be written as
| G (27.89)
5. Generalized Lyddane-Sachs-Teller Relation
= . Suppose that the dielectric constant €(w) does not have a single pole as a function of w? (as in
) ‘ (27.57)) but has the more general structure:
e(w) = A+ 2 5, (27.90)
So® —of '
) Show directly from (27.90) that the Lyddane-Sachs-Teller relation (27.67) is generalized to

0\ 2
€ ;
. == I1 <w> , (27.91)

where the o are the frequencies at which e vanishes. (Hint: Write the condition € = 0 as an nth-
degree polynomial in w?, and note that the product of the roots is simply related to the value of the
polynomial at = 0.) What is the significance of the frequencies w; and of?




