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I.     Geiger Counter 
 
     A Geiger counter is a charged capacitor with the region between the electrodes filled 
with a gas (Fig. 1). As ionizing radiation pass through this gas, the molecules of the gas are 
ionized, so that the gas contains free electrons and positive ions. The electric field in the 
capacitor separates the ions from the free elections and prevents them from recombining.  
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.   In a Geiger counter the anode wire is raised to a high voltage V0 (through a 
very high resistance, not shown).  An avalanche of charge in the tube discharges 
capacitor C through load resistor R, creating a voltage pulse on the output. 

 
 
     If air is used as the counter gas, then the energy needed to form an ion-electron pair is 
about 34 eV, so a 1 MeV gamma ray will produce about 3 x 104 such pairs, and with a typical 
capacitance of 10-11 farads, one will observe a voltage of about ½ millivolt, which is too 
small to be detected in our apparatus. The counter, when operating in this mode, is called 
an ionization chamber; you will not be able to observe counter operation in this mode.  
 
     As the voltage on the counter is increased, the electrons that are released through ioniza-
tion of the counter gas by the original ionizing radiation are accelerated. When the voltage 
is large enough, these accelerated electrons can themselves ionize the counter gas, giving 
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rise to more ion-electron pairs. Thus the current in the capacitor that forms the counter is 
amplified through the production of these secondary electrons. This a Townsend avalanche.  
The current through the counter is found to be proportional to the applied voltage. This 
device is called a proportional counter.  
 
     If the voltage is increased still further, photons generated in the ionization process can 
participate in ionizing the counter gas, and these photons can travel throughout the 
counter. So, when this point is reached, the entire counter is participating in delivering 
current and the counter becomes saturated. The current through the counter becomes 
independent of the voltage, and the device is called a Geiger-Muller counter.  
 
     The output signal consists of the collected electrons from the avalanche processes. The 
collection time is of the order of 10-6 sec, during which time the positive ions do not move 
very far. This process therefore produces a cloud of positive ions around the anode which 
reduces the electric field and eventually terminates the avalanche process.  The result is a 
pulse of current from all the collected electron-ion pairs. 

 
Fig. 2.   Number of electron-ion pairs collected (thus also pulse height) vs voltage 
for gas-filled counters.  Count rate vs voltage also exhibits the same behavior. 

 

     In order to help terminate the avalanches, a quenching gas is added to the counter gas 
during manufacture. The quenching gas usually consists of organic molecules such as 
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ethanol, while the counter gas might be argon or nitrogen. Dissociation of the organic 
molecules can prevent ionization by accelerated ions, which would otherwise cause the 
release of new electrons and resumption of the avalanche process. When the quenching gas 
is all dissociated, the Geiger tube fails and must be replaced.  
 
     There is a considerable voltage region where the counter current in a pulse is 
independent of voltage (Fig 2). This plateau region is where one should operate a Geiger 
counter. If one raises the voltage too high, successive Geiger pulses are generated by a 
single ionizing event, and an audible ticking noise can be heard. At this point, the quenching 
gas is being rapidly destroyed, and unless the voltage is reduced, the counter will fail. IF 
TICKING IS HEARD, REDUCE THE VOLTAGE AND CALL YOUR INSTRUCTOR OR TA.  
 
     For the counters being used in the laboratory, ONE MUST NOT RAISE THE VOLTAGE 
ABOVE 1000 VOLTS (1200 VOLTS FOR SOME OF THE TUBES).  
 
     The current in the counter is converted to a voltage by passing it through coupling 
capacitor and a load resistor (Fig. 1). The voltage pulse is then passed through a 
discriminator, which selects for counting those pulses larger than a specific voltage and 
rejects the others.  At fixed threshold voltage, the count rate from a constant source of 
ionizing radiation becomes independent of voltage in the plateau. Thus in the proportional 
region, the number of counts per second recorded by the scalar is proportional to the GM 
tube voltage, while in the Geiger region, it is independent of the voltage.  
 
     In this part of the experiment find the count rate as a function of counter voltage, using a 
137

Cs source.  First read the APPARATUS AND SAFETY NOTES at the end of this Guide.  
Before turning on the high voltage switch, be sure the voltage knob is set fully counter-
clockwise to zero volts.  After you turn on the counter, turn on the high voltage to the GM 
tube and gradually increase the voltage from zero. Start at the high voltage [HV] where the 
counter just starts to count (the threshold) and proceed up to 300 volts above threshold, 
BUT IN NO CASE ABOVE 1000 VOLTS (25 volt increments. are a good choice). Make sure 
you get through the plateau and just begin to see the count rate rise again. If you were to 
plot your count rate vs voltage you could determine where the proportional and Geiger 
regions are.  A far easier way to do this is to look at the pulse with an oscilloscope:  as you 
increase the high voltage on the G-M tube you will see the pulse peak voltage rise and then 
when you enter the Geiger plateau region it stops rising with increasing HV.  Adjust the HV 
to mid-plateau (so that variations in HV will least affect your counts). As will be seen below, 

the error assigned to an observation of n counts is n .  Error bars showing this error 

level should appear on your plot.  Keep complete notes in your lab notebook. 
 
 

II.      Counting Statistics: The Binomial Distribution 

     All laboratory measurements contain sources of uncertainty or error. Some originate 
with the properties of the measuring instrument (such as trying to estimate fractions of a 
millimeter on a meter stick graduated in millimeters). Others, of which radioactive decay is 
one, originate with the inherent statistical variations of a process whose occurrence is 
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essentially random. If we make a single measurement of a phenomenon governed by a 
random, statistical process, then the outcome of the measurement is useful to us only if we 
can provide the answers to two questions: (1) How well does the measurement predict the 
outcome of future measurements? (2) How close to the "true" value is the outcome of a 
single measurement likely to be? To answer these questions, we must know how the 
various possible outcomes are distributed statistically.  
 
     Let us suppose we have a sample of M nuclei, and we wish to compute the probability 
P(n) that n of them decay in a certain time interval. (For the moment we assume that we 
can measure time with arbitrarily small uncertainty.)  
 
 
     The probability for decay of a single nucleus in this time interval is p. Of course for your 
measurements p includes all the geometry and detection effects of your apparatus. We 
assume that p is constant – each nucleus decays independently of the state of the other 
nuclei. The desired probability can be found from the binomial distribution  
 

 

 

Note that M!/[n!(M-n)!] is the number of combinations of M things taken n at a time, that pn 
is the probability for a particular set of n nuclei to decay, and that (1-p)M-n is the probability 
for the remaining M-n nuclei not to decay.  In your lab notebook explain each of these three 
factors and why you would measure only the product. 
 
     The binomial distribution is most often encountered in simple random experiments, 

such as tossing a coin or rolling dice. The distribution is characterized by its mean n , which 
is equal to pM (as one would guess: the decay probability per nucleus times the total 
number of nuclei gives the number of decays) and also by the variance 2

.  These two 
quantities are defined as follows:  
 
     Consider what happens when you make repeated measurements of the number of 
counts in some fixed time interval.  If the data consist of N measured values of n, call them 

n1, n2, n3, … , then the mean n  and standard deviation , are given by  
 
 
 
 

 
      
 
 
 
     The standard deviation which is the square root of the variance, is a rough measure of 

the "width" of the statistical distribution.   For the binomial distribution,  pMn  and  
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)1(2 pn  .  

 

 

 

III. Determination of Background: The Poisson Distribution 
 
     When n and M are small, the binomial distribution is quite trivial to use, but when n and 
M are very large, as might be typical in decay processes, the distribution becomes less 
useful as the computations become difficult. We can obtain a less cumbersome 
approximation in the case when p « 1 (which will usually be true for radioactive decays):  
 
 
 
 
 

where pMn   as before. This is known as the Poisson distribution. Note that the 

probability of observing n decays depends only on the mean value n .   For this distribution,  
 
 
 
The Poisson distribution can be derived from the binomial distribution in the case that 
p<<1.  
 
     In this experiment, you are going to first analyze the background radiation counts in a 
Geiger counter. That is, the counter is turned on with no radioactive source present. Then 
the number of counts occurring in a suitably chosen time interval is observed. This 
observation is repeated N times, where N is a large number. The number of times n counts 
is observed is the frequency, f(n).   Note that  
 
 
 

Therefore, to obtain an estimate of the probability of observing n counts in the time 
interval chosen, Pn , one multiplies the frequency by a factor 1/N; conversely, one may form, 
a frequency function, f(n), by multiplying P(n) by N:  
 
 

 

 

Observing a Poisson distribution and determining the background in your counter 
 
     The background counts are always present, so you will have to subtract the mean 
background counts from your measurements of counts from radioactive samples. So first 
you must measure the background. The way to do this measurement is to keep the voltage 
set at the previously chosen operating point and remove any radioactive source from the 
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tube holder. Then, choose a time interval which will give an average of 2-3 background 
counts per time interval. Now record the actual number of counts in N = 50 such intervals.  
 
     Make a histogram of your data -- a sort of bar chart with number of counts per interval, n, 
as the horizontal axis and number of times a particular count appeared (frequency, fn ) as 
the vertical axis, as shown in Fig. 3. (A more familiar histogram is a class grade distribution 
with n representing a particular score and fn the number of students receiving that score).  
 
     Find the sample mean of your data by dividing the total number of counts by the number 

of trials.  Use this as an estimate of n  in the formula for the Poisson distribution.  
 
     Plot the Poisson distribution f(n) on the same histogram to compare theory with 
experiment.  
 

The measured and predicted frequencies are different, of course. If one repeated this 
experiment many times, the mean of the measured frequencies fn for any particular value of 
n, should converge to the value predicted by the Poisson distribution f(n). The standard 

deviation of these frequencies should be )(nf . Thus your data can be taken as 

represented by a Poisson distribution provided 95% of it is within two standard deviations 
of the Poisson values. Is this the case?  Plot and discuss in your lab book.       
 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

 
Fig. 3.   Sample histograms of background counts (blue) and matching Poisson 

distribution (red) 

 

 

IV.      Radioactive Source:  Gaussian Distribution  

     Returning to the discussion of the binomial distribution, another useful 
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approximation occurs in the case of small p and large n , in which case the “normal” or 
Gaussian distribution is obtained:  
 

 

 

and once again, n . 

 
     The Poisson distribution becomes identical to the Gaussian distribution when the 
number of data points becomes large, and the Gaussian distribution has the standard 
deviation given above (Fig. 4).  The Gaussian distribution has the property that 68% of the 

probability lies within ±2 of the mean value n .  Unfortunately the mean value n  is not 
available for measurement; it results formally from an infinite number of trials. Clearly the 

"true" value we are seeking is represented by n , and our single measurement n has a 68% 

chance of falling within ± of n , we therefore take n as the best guess for n  and we quote 

the error limit on our estimate n as ±,  or ± n .  

 
     In this experiment, you will use a 137Cs source to investigate a situation that has ap-
proximately a Gaussian distribution. The numbers, n, will be on the order of 1000. Thus the 
standard deviation will be about 30, and 95% of the data will lie between 1000-60 and 
1000+60. There would be about 120 values of n to contend with, unless some grouping of 
data were done. In fact, by putting data in bins of width n, one may make the data analysis 
more tractable.  

 

Fig. 4.  Comparison of Poisson and Gaussian distributions for n  = 2 and 70. The 

approximation of using the Gaussian distribution improves as n increases.  

 

Take N~50 data points (observations of the value of n) and let Nb be the number of bins. Let 
the number of observations of n falling into the q-th bin be fq. Then, as in the previous 
section,  
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and the probability, Pq , is given by,  

 
 
 
 
But this number does not correspond to the probability in equation (8), because the 
binning process in fact involves a summation over the probability distribution. The form of 
the Gaussian distribution that corresponds to (11) is, 
 
 
  
 

where nq  is the value of n at the center of the q-th bin and P(n) is given in (8).  

The corresponding prediction for the frequency, fq, is,  
 

 

 

 

Observing a Gaussian distribution  

     To do this part of the experiment you will use a radioactive 137Cs source.  Because of 
the unstable neutron to proton ratio, 137Cs nuclei beta decay via the weak interaction to 
137Ba with the emission of an energetic electron (up to ~1 MeV) and an electron 
antineutrino – changing a neutron into a proton. This Cs decay has a 30 year half-life. 
The 137Ba daughter nucleus is usually created in a metastable excited state 137mBa, from 
which it decays in 3 minutes with the emission of a 662 KeV gamma ray (high energy 
photon).  So your radioactive source will be emitting random ionizing energetic 
electrons and gamma rays at a roughly constant rate over the timescale of your 
experiment, because of the long half life of the 137Cs source. 
 
 
 

Nf
bN

q

q 
1

(10) 

N

f
P

q

q  (11) 

nnPnPP q

nn

nn

q

q

q

 




)()(

2/

2/

(12) 

(13) nnNPf qq  )(



 9 

 
 
 
 
 
 
 

 
 

 
 
 
 

Fig. 5.   Decay scheme of 
137

Cs. 

 
 
First, read the Radiation Safety notice at the end of this guide. Your TA will deliver your 
radioactive source – be sure to return it to your TA immediately after use. The Geiger 
tube is more sensitive to the ionizing electrons than the gamma-rays. Place the 137Cs 
source beneath the Geiger tube in one of the slots. Note how the count rate changes as 
you vary the distance between the source and the GM tube.  Consider all sources of error, 
including the accuracy of your timing. Based on this, choose a convenient time interval 
which will give approximately 1000 counts/interval for which you have accurate timing. 
Make N=50 different determinations of counts/chosen time interval. Then bin it into 6-7 
bins. Describe your apparatus and place these data and the rest of your analysis in your 
lab book. 
 
      Find the mean and standard deviation of your binned data.  

 

     Since you used a histogram in the last section, this time plot fq vs nq as points on a 
standard linear plot, and show error bars of one standard deviation in the frequencies, fq. 

(Recall that the standard deviation in the frequencies fq is expected to be )(qf .  For 

example, if you had 100 counts in one of your frequency bins, the one standard deviation 
error bar would be  10 counts.) Then plot the prediction (13) on the same graph, 
treating nq as a continuous variable, so that the prediction is shown as a smooth curve, 
while the measured frequencies are shown as points. What fraction of the data points 
have error bars that overlap the prediction?  Is it what you expect?  Discuss. 
 
     What is the mean of your count rate and the error on the mean? 
 
 
     Naturally all sources of radioactivity in your experiment produce uncorrelated counts 
in your detector, including the background radiation.   The combination is nearly 
Gaussian distributed at high count rate.  Suppose however you were interested in the 
statistics of your radioactive 137Cs source itself in a situation where it was placed a long 
distance away from the detector such that the count rate from the source was only 
approximately five times the background rate.  Describe how you would correct your 
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data in this new experiment for the background and how the errors propagate. 
 
 
V. Mean Life of the Muon 
 
Unlike your 137Cs source, many unstable nuclei and unstable fundamental particles decay 
quickly, and with the proper equipment you can measure the characteristic decay time.  In 
this last exercise, by analyzing some muon decay data obtained by a student last year you 
will determine the mean lifetime of the muon, an unstable particle which occurs naturally 
in the environment due to cosmic ray showers.  In analyzing these data, you will apply your 
knowledge of weighted least-squares fits and error propagation. But first, some basics of 
decay (see also Melissinos pp354-355) and of least-squares fitting.    
 
     For the nucleus of a radioactive isotope and for an unstable particle there is a constant 
probability per unit time that it will undergo decay.  For example, in a sample of N atoms 
of a given isotope the number disintegrating in time dt is given by 
 
 
 
where N is the total number of nuclei (or atoms) in the isotope sample and  is the 
constant of proportionality called the decay constant.  The solution to this equation is 
 
 
 
where N is the number present at t = 0. Evidently, the decay constant is related to the 
mean lifetime  /1  and the half-life /2ln2/1 t .   Both terminologies are used, so be 

careful which one is meant, and be sure to specify which of the two you quote in your lab 
book and write-up.  Muon decay also follows such an exponential distribution with a 
mean lifetime of about 2 sec (Melissinos p408). 
 
     On the PHY122 web page for this experiment you will find a file called muondecay-
2009student.xls (or something similar).  This file contains a single vector of numbers 
each of which represents a single measurement of the time for a muon to decay (actually 
the time difference between the detection of a stopping muon and the emission of its 
decay electron or positron) in very fine bins of decay time going from 0-4096, where 
4096 represents ten sec. The file is for an entire 5-day run in which 13433 muon 
decays were measured (so the file is 13433 lines long, each line giving the measured 
decay time for that particular muon).   
 
     The first thing you should do is look at the distribution of decay times. To do this, 
make a histogram of the data, plotting number of events with a certain decay time vs the 
decay time in the fine bins (ADC channels) of the data acquisition system.  A binned 
version of this is shown in Figure 6, but make your own plot and put it in your lab book. 
Clearly there are ranges of data you want to avoid, such as ADC channel numbers less 
than 125 and greater than 4075.   Re-bin your accepted data into 200 bins of decay time.  
 

NdtdN  (14) 

)exp()( 0 tNtN  (15) 
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Fig. 6.  Histogram of the distribution of all observed muon decay times for a 5 day run. 

 
Since you are expecting an exponential decay, replot this binned accepted data as log 
number of events vs decay time bin.  A pure exponential decay should appear as a 
straight line on the log-linear plot, and with some luck you could get a rough estimate of 
the mean decay time by fitting a straight line to this semi-log plot (try it). However, your 
semi-log plot probably shows a departure from this expected behavior, at the low count 
end.  What is going on?  
 
Suppose the muon experiment logic electronics is not perfect, and there is a constant 
probability of triggering on an unrelated radiation event instead of that stopped muon. 
Of course this background “accidentals” count rate is difficult to measure.   It is possible 
to calculate this accidentals background from other data using the same apparatus.  
Suppose the student actually did this calculation and got a value of exactly 2 counts per 
time bin in your re-binned 200 bin data. If you account for this background, does your 
semi-log plot look better? 
 
Now plot error bars on your 200 points. Assume purely Poisson statistics. You will find it 
convenient to form a second column of estimated Poisson error corresponding to each of 
the 200 time bins by taking the square root of the counts. Look at your plot now. Are the 
errors uncorrelated point-to-point?  Do the points jump around by an amount consistent 
with the error bars? Obviously, some of the points have larger error bars than others and 
are thus less trustworthy. 
 
     Try to estimate the muon lifetime by taking into account these statistical errors. Make 
a weighted least-squares fit to your binned selected data, and solve for a best estimate 
mean muon lifetime.  Suppose we want to fit a theoretically predicted function )( ity .  If 

we have data points yi each with its own standard deviation i , then   is defined by 
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There are many algorithms for the minimization of , as discussed in Bevington.  The 
software package Igor (supplied to PHY122 students) is a good package for exploring 
fits.   Once a fit is achieved, how good is it?  Your computer program should give you the 
value of  that results from the best fit Since the mean of  is predicted to be the 

number of data points N (200 in this case), and its standard deviation to be N2 , you 

can compare and see if the value of  that you obtained is within these limits. Quote 
your answer for the “reduced ” obtained by dividing  by the number of degrees of 
freedom (in this case 200-2=198).  A reduced  close to 1 is a good fit. 
 
Quote your answer for the muon lifetime and its 95% confidence error. [There are 
corrections to this “raw” lifetime which depend on the nature of the detector and the 
ratio of positive to negative muons in the lab, but don’t worry about that for this 
exercise.]  What if last year’s student got the wrong answer for the background! How 
might that affect your result? Try refitting for several values of the background to 
measure the sensitivity of your answer for the muon lifetime to this assumed 
background. 
 
     Suppose the student doing the muon experiment last year undertook the appropriate 
experiments and measured a background count and one standard deviation error (in 
your 200 bin system) of 2.0 0.6 counts per bin.  How would this propagate to your new 
quoted error? As you learned in the previous section, the error in your background 
counts nb is the square root of this number. But this error cannot just be added to the 
error in your counts for each of your 200 bins.  Instead, one must calculate the 
propagation of errors. i.e. for uncorrelated errors the errors add in quadrature.   For 

example, in our case bnny   , and so then bbny nn 222  . 

 
     Finally, suppose you are not given the background accidental counts. You must then 
treat this as an unknown variable.  You now have three parameters to fit: the amplitude 
of the exponential term, the decay constant in the exponential, and an additive constant 
(the unknown background).  Make a weighted fit for this case and observe what happens 
to your resulting error in the muon mean lifetime. Also see what the best fit background 
level turns out to be!   In your lab book and write-up quote also this revised estimate for 
the muon mean lifetime and its 95% confidence limits.  In a real experiment you would 
also add another kind of error: your best estimate for systematic error.  For example, 
suppose that the calibration of the 0-4096 ADC timescale was only accurate to 2%.  Use 
this as an estimate of your systematic error and quote it separately. 
 
     Now that you have 10-15 pages of descriptions, data, and analysis in your lab 
notebook, write up a 5-8 page scientific project report on this entire counting statistics 
lab in the style recommended in the Reports section of the PHY122 web. Style files are 
supplied.  You will use these data analysis techniques, and the scientific writing style, in 
your elective experiments in PHY122 and later in your career in science and engineering. 
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APPARATUS AND SAFETY NOTES FOR THE GEIGER COUNTER EXPERIMENT 

 
1. Determination of Starting Potential, Threshold and Plateau  

Connect the coaxial cable from the GM tube into the connector marked INPUT on the 
rear panel. Place HIGH VOLTAGE and MASTER switches in the OFF position and plug in 
power. Leave the HIGH VOLTAGE OFF and turn power ON.  Check the counter (scalar) by 
placing the TEST/USE switch on TEST and the COUNT/STOP switch on COUNT. The 
scalar should now count line frequency pulses (60 counts/sec). Now that you are sure 
the scalar is working correctly, place a 137Cs source in the second or third slot of the 
source holder. (Don't use the top slot as the counting rate is often too high). CAUTION: 
DO NOT TOUCH THE FACE OF THE GM TUBE DETECTOR AS THIS WILL BREAK THE 
THIN WINDOW AND RUIN THE TUBE!! Place the H.V. ADJUST in the MINIMUM position 
and turn on the high voltage.  Now slowly increase the voltage until the scalar starts 
counting. The voltage where the scalar starts counting is called threshold. In doing the 
experiment, DO NOT EXCEED A VOLTAGE OF 1000 VOLTS [1200 VOLTS FOR SOME 
TUBES].  IF YOU HEAR A TICKING, TURN DOWN THE VOLTAGE! 
 
 

2. Data Analysis  

Some data analysis can be performed using the KaleidaGraph program.  The far more 
capable data analysis program Igor is also available to all PHY122 students. If you prefer, 
other programs such as MatLab, LabView, and IDL may be used. Do not blindly use these 
programs; describe your analysis failures and successes in detail in your lab book and 
write-up, including fit equations and parameter errors. 
 

 

 

3. Radiation Safety 
 
     In this lab you will work with a variety of radioactive sources. The textbook by 
Melissinos (page 485) has a section on radiation safety, which you should read before you 
use any of these sources. Most sources are relatively weak and involve little danger if you 
exercise minimal precautions. If you have any question about the amount of radiation near 
a source, there are Geiger counters in the lab, and you are encouraged to use them to 
measure radiation levels. The only significant danger from the sources in this lab arises if 
you ingest (eat or swallow) them. You will probably not intentionally eat any of the 
radioactive sources, but there is a small possibility that one of the seals may leak and this 
could ultimately contaminate something that you eat. Thus you should wash your hands 
after handling any radioactive source. Do not handle the sources with your fingers. It is 
safer to use the supplied tweezers. Eating or drinking in the Roessler 154/156 lab area is 
strictly forbidden. Before using any radioactive sources you must check with an instructor 
or TA to be sure that you known how to handle them properly. Return your source to the 
TA before 5:30pm.  Finally, after working with radioactive sources, it is recommended that 
you check your hands with a portable Geiger counter. 


