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THERMAL AGITATION OF ELECTRIC CHARGE
IN CONDUCTORS*

BY H. NYQUIST

ABSTRACT

Tke electromotive force die to tkernsul agitation in conductors is calculated by means
of principles in thermodynamics and statistical mechanics. The results obtained
agree with results, obtained experimentally.

R. J. B. JOHNSON' has reported the discovery and measurement of an
electromotive force in conductors which is related in a simple manner

to the temperature of the conductor and which is attributed by him to the
thermal agitation of the carriers of electricity in the conductors. The work
to he resported in the present paper was undertaken after Johnson's results
were available to the writer and consists of a theoretical deduction of the
electromotive force in question from thermodynamics and statistical me-
chanics. '

Consider two conductors each of resistance R and of the same uniform
temperature T connected in the manner indicated
in Fig. 1. The electromotive force due to thermal
agitation in conductor I causes a current to be set
up in the circuit whose value is obtained by dividing

I the electromotive force by 2R. This current causes
a heating or absorption of power in conductor II,
the absorbed power being equal to the product of R
and the square of the current. In other words powerFlg. 1.
is transferred from conductor I to conductor II. In

precisely the same manner it can be deduced that power is transferred from
conductor II to conductor I. Now since the two conductors are at the same
temperature it follows directly from the second law of thermodynamics
that the power fiowing in one direction is exactly equal to that fiowing in
the other direction. It will be noted that no assumption has been made as
to the nature of the two conductors. One may be made of silver and the other
of lead, or one may be metallic and the other electrolytic, etc.

It can be shown that this equilibrium condition holds not only for the
total power exchanged by the conductors under the conditions assumed, but
also for the power exchanged within any frequency. For, assume that this
is not so and let A denote a frequency range in which conductor I delivers
more power than it receives. Connect a non-dissipative network between
the two conductors so designed as to interfere more with the transfer of energy

* A preliminary report of this work was presented before the Physical Society in February,
1927.

' See preceding paper.
~ Cf. W Schottky, Ann. d. Physik 57', 541 (1918),
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Fig. 2.
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in range A than in any other range, for example, a resonant circuit connected
as indicated in Fig. 2 and resonant within the range A. Since there is equi-
librium between the amounts of power transferred in the two directions
before inserting the network, it follows that after the network is inserted more
power would be transferred from conductor II to the conductor I than in
the opposite direction. But since the conductors are
at the same temperature, this would violate the
second law of thermodynamics. We arrive, there-
fore, at the important conclusion that the electro- R R

motive force due to thermal agitation in conductors
is a universal function of frequency, resistance and
temperature and of these variables only. '

To determine the form of this function consider
again two conductors each of resistance R connected
as shown in Fig. 3 by means of a long non-dissipative transmission line,
having an inductance L and a capacity C per unit length so chosen that
(I./C)'P=R. In order to avoid radiation one conductor may be inter-
nal to the other. Under these conditions the lines has the characteristic
impedance R, that is to say the impedance of any length of line when
terminated at the far end in the impedance R presents the impedance
R at the near end and consequently there is no reHection at either end
of the line. Let the length of the line by / and the velocity of propagation

R
I

Fig. 3.

p. After thermal equilibrium has been established, let the absolute tempera-
ture of the system be T. There are then two trains of energy traversing the
transmission line, one from left to right in the figure, being the power de-
livered by conductor I and absorbed by the conductor I I, and another train
in the reverse direction.

At any instant after equilibrium has been established, let the line be
isolated from the conductors, say, by the application of short circuits at the
two ends. Under these conditions there is complete reHection at the two
ends and the energy which was on the line at the time of isolation remains
trapped. Now, instead of describing the waves on the line as two trains
traveling in opposite directions, it is permissible to describe the line as
vibrating at its natural frequencies. Corresponding to the lowest frequency

' For a general treatment of the principle underlying the discussion of this paragraph
reference is made to P. W. Bridgman, Phys. Rev. 31, 101 (1928).
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the voltage wave has a node at each end and no intermediate nodes. The
frequency corresponding to this mode of vibration is v/2/. The next higher
natural frequency is 2s/2/. For this mode of vibration there is a node at each
end and one in the middle. Similarly there are natural frequencies 3v/2l,
4v/2f, etc. Consider a frequency range extending from v cycles per second
to v+dv cycles per second, i, e. , a frequency range of width dv. The number
of modes of vibration, or degrees of freedom, lying within this range may be
taken to be 2ldv/v, provided l is taken sufficiently large to make this ex-
pression a great number. Under this condition it is permissible to speak of
the average energy per degree of freedom as a definite quantity. To each
degree of freedom there corresponds an energy equal to kT on the average,
on the basis of the equipartition law, where k is the Boltzmann constant.
Of this energy, one-half is magnetic and one-half is electric. The total energy
of the vibrations within the frequency interval dv is then seen to be 2lkTdv/s
But since there is no reflection this is the energy within that frequency
interval which was transferred from the two conductors to the line during
the time of transit l/v. The average power, transferred from each conductor
to the line within the frequency interval dv during the time interval f/s is
therefore k Tdv.

It was pointed out above that the current in the circuit of Fig. i due to
the electromotive force of either conductor is obtained by dividing the
electromotive force by 2R, and that the power transferred to the other
conductor is obtained by multiplying the square of the current by R. If
the square of the voltage within the interval dv be denoted by 8'dv we have,
therefore

E'dv =48k Tdv

This is the expression
of pure resistance R and

Rv+ "Xv

in the opposite direction.
to be equal to

for the thermal electromotive force in a conductor
of temperature T. Let it next be required to find
the corresponding expression for any network built
up of impedance members of the common tem-
perature T. Let the resistance R be connected,
as shown in Fig. 4, to any such network having
the impedance R,+iX„,where R„and X„may be
any function of frequency. By reasoning entirely
similar to that used above it is deduced that the
power transferred from the conductor to the
impedance network is equal to that transferred
But the former is shown by simple circuit theory

E'R„dv/ f(R+R„)'+X„'] (2)

and the latter is similarly equal to

E„'Rdv/ [(R+R„)'+X„'] (3)
where ZPdv„is the square of the voltage within the frequency range dv.
It follows that
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E„'dv =4E„kTdv (4)
for any network.

To put this relation in a form suitable for comparison with measurements
let V(or) be the transfer admittance of any network from the member in
which the electromotive force in question originates to a member in which
the resulting current is measured. Let or=2rrv and let R(or) =R„be the
resistance of the member in which the electromotive force is generated. We
have then for the square of the measured current within the interval dv

I dv = R„~ Y(or)
~

dv = (2/rr) k TR(or)
~

V(or)
~

'dor (5)

Integrating from 0 to ~

P = (2/rr) k T R(or) V(or) 'dor
0

(6)

which is Eq. (1) in Johnson's paper.
It will be noted that such quantities as charge, number, and mass of the

carriers of electricity do not appear explicitly in the formula for electromotive
force These quantities inHuence R„however, and, therefore, enter in-
directly.

It is instructive to consider the equilibrium between the thermal agitation
of the carriers of electricity in a conductor and the thermal agitation of
molecules in a gas. Consider a semi-infinite tube filled with gas of tempera-
ture rand let the end be closed in a weightless inHexible piston forming the
diaphragm of an ideal non-dissipative telephone receiver having no magnetic
leakage. Such a receiver presents an electrical impedance which is a function
of the mechanical impedance of the gas in the tube and which may be taken
as R by choosing a suitable number of turns for the receiver element. Due
to the bombardment of the diaphragm by the molecules in the gas, there
will be an electromotive force at the terminals of the receiver. This electro-
motive force is, of course, in statis'tical equilibrium with that due to thermal
agitation in a conductor of resistance R. It follows that it should be possible
to calculate that electromotive force from the kinetic theory of gases, but
this calculation would not be so direct as that given above, making use of
a transmission line.

In what precedes the equipartition law has been assumed, assigning a total
energy per degree of freedom of kT. If the energy per degree of freedom be
taken

h /( vhv/ekT 1)

where h is the Planck constant, the expression for the electromotive force
in the interval dv becomes

E 'dv = 4R„hdv/(e"" r ~r 1) . —

Within the ranges of frequency and temperature where experimental in-
formation is available this expression is indistinguishable from that obtained
from the equipartition law.
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