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l-u;{)l-to this point, we have described measurements that require only

e imentary laboratory equipment. Before continuing, however, we will
cuss a broader range of topics in electronics and data acquisition.

3.1. ELEMENTS OF CIRCUIT THEORY

.lj‘:é:fli?ery( nrlelasuren‘wept.n?ade in a physics laboratory comes down to
ing of elelgl‘]tf ’ \0 ﬁl.ag‘e_. g i - HUpORantio have at least a basic understand-
even 1o COmOTLt LIII‘LU]E«. lt fs qol llﬂPO{'taql to be able to design circuits, or
R enouﬂ};}){e ely gn e1.5tdnd a circuit given to you, but you do need to

oh to eet some idea of how the measuring apparatus affects your
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physics course should be sufficient. It is helpful to have already learned
something about resistors, capacitors, and inductors as well, but we will
review them briefly.

3.1.1. Voltage, Resistance, and Current

Figure 3.1a shows a DC current loop. It is just a battery that provides the
electromotive force V., which drives a current I through the resistor R.
This is a cumbersome way to write things, however, so we will use the
shorthand shown in Fig. 3.1b. All that ever matters is the relative voltage
between two points, so we specify everything relative to the “common”

or “ground.” There is no need to connect the circuit loop with a line: it

is understood that the current returns from the common point back to the
terminals of the battery.

The concept of electric potential is based on the idea of electric potential
energy. and energy is conserved. This means that the total change in electric
potential going around the loop in Fig. 3.1a must be zero. In terms of
Fig. 3.1b, the “voltage drop™ across the resistor R must equal V. For ideal
resistors, V = I R: that is, they obey Ohm’s law. The SI unit of resistance
is volts/amperes. also known as the ohm (£2).

Electric current is just the flow of electric charge (I = dq/dt, to be
precise). and electric charge is conserved. This means that when there is a
“junction” in a circuit, like that shown in Fig. 3.2, the sum of the currents
flowing into the junction must equal the sum of the currents flowing out.
In the case of Fig. 3.2, this rule just implies that /; = /> + /3. It does not

(a) (b) o+V

+
v = R
Ve R

FIGURE 3.1 The simple current loop (a) showing the entire loop. and (b) in shorthand.

I3

FIGURE 3.2 A simple three-wire circuit junction.

(a) (b)
— AAA— AN o
R, R,
Ry

FIGURE 3.3 Resistors connected (a) in series and (b) in parallel.

matter whether you specify the current flowing in or out, s0 long as you are
consistent with this rule. Remember that current can be negative as well as
positive.

These rules and definitions allow us to determine the resistance when
resistors are connected in series, as in Fig. 3.3a, or in parallel, as in Fig. 3.3b.
In either case, the voltage drop across the pair must be /R, where [ is the
current flowing through them. For two resistors R, and R» connected in
series. the current is the same through both, so the voltage drops across
them are I R; and I R,, respectively. Since the voltage drop across the pair
must equal the sum of the voltage drops, then IR = IRy + I R>. or

R=R + R Resistors in series.

If R, and R are connected in parallel, then the voltage drops across each
are the same. but the current through them is different. Therefore IR =
IRy = 1hRy.Since I = I, + >, we have

| 1 " 1
R R R>
Remember that whenever a resistor is present in a circuit, it may as well
be some combination of resistors that give the right value of resistance.

Resistors in parallel.
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A very simple, and very useful, configuration of resistors is shown in
Fig. 3.4. This is called a “voltage divider™ because of the simple relationship
between the voltages labeled Vi, and V. Clearly Viy = I(R| + R2) and
Vou = I(R>), where [ is the current through the resistor string. Therefore

R>
Ri+ Ry

That is, this simple circuit divides the “input” voltage into a fraction deter-
mined by the relative resistor values. We will see lots of examples of this
sort of thing in the laboratory.

Do not get confused by the way circuits are drawn. It does not matter
which directions lines go in. Just remember that a line means that all points
along it are at the same potential. For example, it is common to draw a
voltage divider as shown in Fig. 3.5. This way of looking at it is in fact an
easier way to think about an “input” voltage and an “output” voltage.

Vmu — Viu (3.1)

Vin

Vout

Az

FIGURE 3.4 The basic voltage divider.

e AVAVAY o
ViH vOI..It
Ay
Rz

FIGURE 3.5 An alternate way to draw a voltage divider.

3.1.2. Capacitors and AC Circuits

A capacitor stores charge, but does not allow the charge carriers (i.e.,
electrons) to pass through it. It is simplest to visualize a capacitor as a
pair of conducting plates, parallel to each other and separated only by a
small amount. If a capacitor has a potential difference V across its leads
and has stored a charge ¢ on either side, then we define the capacitance
C = q/V. Itis easy to show that for a parallel plate capacitor, C is a
constant value independent of the voltage. In general, it is possible, but not
casy, to calculate C from the geometry of the conducting surfaces. The SI
unit of capacitance is Coulombs/Volts, also known as the Farad (F). As it
turns out, one Farad is an enormous capacitance, and laboratory capaci-
tors typically have values between a few microfarads (W F) down to a few
hundred micromicrofarads (juuF).!

Itis pretty easy to figure out what the effective capacitance is if capacitors
are connected in series and in parallel, just using the above definitions and
the rule about the total voltage drop. The answers are

1 | 1
— = e — Capacitors in series
c=o’ o pacitors in series

and
C=C+C Capacitors in parallel,

that is, just the opposite from resistors.

Now let’s think about what a capacitor does in a circuit. Let’s take the
resistor R, in the voltage divider of Fig. 3.4 and replace it with a capacitor
C. This is pictured in Fig. 3.6. The capacitor does not allow any charge
carriers to pass through it, so the current / = 0. Therefore the voltage
drop across the resistor R is zero, and Vi, the voltage across the capacitor
C, just equals Vi,. You may wonder, what good is this? We might have

Just as well connected the output terminal to the input! To appreciate the

importance of capacitors in circuits, we must consider voltages that change
with time.

If the voltage changes with time, we refer to the system as an AC circuit.
If the voltage is constant, we call it a DC circuit. Now go back to the
voltage divider with a capacitor, pictured in Fig. 3.6, and let the input

g jF =1 pF (picofarad).



Vin
R
Vout
I C

FIGURE 3.6 A voltage divider with a capacitor in it.

voltage change with time in a very simple way. That is, take

Vin(t) =0 fort <0 (3.2)
=V fort >0 (3.3)

and assume that there is no charge ¢ on the capacitor at t = 0. Then for
t > (), the charge ¢ () produces a voltage drop Vo (1) = ¢(1)/C across
the capacitor. The current /(1) = dgq/dt through the divider string also
gives a voltage drop 7 R across the resistor, and the sum of the two voltage
drops must equal V. In other words

d ‘/(‘]LI[

d
V= Vou+ IR = Vou + R d" = Vou + RC (3.4)

dr
and Vou (0) = 0. This differential equation has a simple solution. It is

Vou(t) = V[1 — e~ 1/RC), (3.5)

Now it should be clear what is going on. As soon as the input voltage is
switched on, current flows through the resistor and the charge carriers pile
up on the input side of the capacitor. There is induced charge on the output
side of the capacitor. and that is what completes the circuit to ground.
However, as the capacitor charges up, it gets harder and harder to put
more charge on it, and as t — oc, the current does not flow anymore and
Vour = V. This is just the DC case, where this circuit is not interesting
anymore.
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The value RC is called the “capacitive time constant,” and it is the only
time scale we have in this circuit. That is, statements like “t — 0" and
“t — 00” actually mean “r < RC™ and *t > RC.” The behavior of the
circuit will always depend on the time as measured in units of RC. So now
we see what is interesting about capacitors. They are sensitive to currents
that are changing with time in a way that is quite different from resistors.
That s a very useful property that we will study some more, and use in lots
of experiments.

The time dependence of any function can always be expressed in terms of
sine and cosine functions using a Fourier transform. It is therefore common
to work with sinusoidally varying functions for voltage and so forth, just
realizing that we can add them up with the right coefficients to get whatever
time dependence we want in the end. It is very convenient to use the
complex number notation

V(t) = Vye'™ (3.6)

for time-varying (i.e., AC) voltages, where it is understood that the voltage
we measure in the laboratory is just the real part of this function. The
angular frequency @ = 27 v, where v is the frequency, that is, the number
of oscillations per second. This expression for V (¢) is easy to differentiate
and integrate when solving equations. It is also a neat way of keeping track
of all the phase changes signals undergo when they pass through capacitors
and other “reactive” components. You will see and appreciate this better
as we go along.

Now is a convenient time to define impedance. This is just a general-
ization of resistance for AC circuits. Impedance, usually denoted by Z, is
a (usually) complex quantity and (usually) a function of the angular fre-
quency w. It is defined as the ratio of voltage drop across a component to
the current through it, and just as for resistance, the SI unit is the ohm.
For “linear” components (of which resistors and capacitors are common
examples), the impedance is not a function of the amplitude of the volt-
age or current signals. Given this definition of impedance, the rules for
the equivalent impedance are the same as those for resistance. That is. for
components in series, add the impedances, while if they are in parallel, add
their reciprocals.

The impedance of a resistor is trivial. It is just the resistance R. In
this case, the voltage drop across the resistor is in phase with the current
through it since Z = R is a purely real quantity. The impedance is also
independent of frequency in this case. For a capacitor, the voltage drop
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V = Vye'™ = ¢/C and the current I =dq /dt =iwC x Voe'® . Therefore,
the impedance is

o Viiw. 1)
T I(w, 1)

Z(w (3.7)

I
iwC’
Now the behavior of capacitors is clear. At frequencies low compared
to 1/RC. i.e. the “DC limit,” the impedance of the capacitor goes to
infinity. (Here. the value of R is the equivalent resistance in series with
the capacitor.) It does not allow current to pass through it. However, as the
frequency gets much larger than 1/RC, the impedance goes to 0 and the
capacitor acts like a short, since current passes through it as if it were not
there. You can learn a lot about the behavior of capacitors in circuits just
by keeping these limits in mind.

We can easily generalize our concept of the voltage divider to include
AC circuits and reactive (i.e., frequency dependent) components like
capacitors. We will learn about another reactive component, the induc-
tor, shortly. The generalized voltage divider is shown in Fig. 3.7. In this
case, we have

Zs :
Vou(w, t) = Vip (o, I}m = Vin(w, !)ge’¢. (3.8)

where we have expressed the impedance ratio Z,/(Zy + Z>), a complex
number, in terms of two real numbers ¢ and ¢p. We referto ¢ = | Vou|/| Vin|

FIGURE 3.7 The generalized voltage divider.
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as the “gain” of the circuit, and ¢ is the phase shift of the output signal
relative to the input signal. For the simple resistive voltage divider shown
in Figs. 3.4 and 3.5, we have ¢ = R|/(R| + Ry) and ¢ = 0. That is,
the output signal is in phase with the input signal, and the amplitude is
just reduced by the relative resistor values. This holds at all frequencies,
including DC.

The relative phase is an important quantity, so let’s take a moment to
look at it a little more physically. If we write Vi, = Voe'®", then according
to Eq. (3.8) we can write Vou = gVoe'™ ™. Since the measured voltage is
just the real part of these complex expressions, we have

Vin = Vo cos(wr)
Vou = gVocos(wt + ¢)

These functions are plotted together in Fig. 3.8. The output voltage crests
at a time different than the input voltage, and this time is proportional to
the phase. To be exact, relative to the time at which Vi is a maximum,

¢ ¢

Time of maximum Vo = ~3 Xx T =——,
i

where T = 27 /w is the period of the driving voltage.

[Vinl

|voutl
=g|Viil

Voltage

02+
-04
-06
0.8 r

=Tp 2l

-

0 10 20 30 40 50 60 70 80
Time

FIGURE 3.8 Input and output voltages for the generalized voltage divider.
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Now consider the voltage divider in Fig. 3.6, Using Eq. (3.8) we find
|

v 1
Vour = Vinﬂ%_ = 1"’in]—_'_‘l.ﬁa‘-
iwC

The gain g of this voltage divider is just (1 + w?R*C*)~!/* and you can
see that for @ = 0 (i.e., DC operation) the gain is unity. For very large
frequencies, though, the gain goes to 0. The gain changes from unity to 0
for frequencies in the neighborhood of 1/RC. We have said all this before,
but in a less general language.

However, our new language tells us something new and important
about Vg, namely the phase relative to Vi,. Any complex number z can
be written as

z=|zle'® and * =|zle”"?, (3.9)
where
Im(z)
=tan~' | — 3.10)
e [Re(:)] :

is called the “phase” of z. Therefore, we find that
1 _ 1—iwRC 1 oit
14+iwRC ~ 1+ @*R2CY (1 +w?R2CH
In other words, the output voltage is phase shifted relative to the input
voltage by an amount ¢ = —tan~ (wRC). For @ = 0 there is no phase
shift, as you should expect, but at very high frequencies the phase is shifted
by —90°.

3.1.3. Inductors

Just as a capacitor stores energy in an electric field, an inductor stores
energy in a magnetic field. An inductor is essentially a wire wound into
the shape of a solenoid. The symbol for an inductor is , The key is in
the magnetic field that is set up inside the coil, and what happens when the
current changes. So, just as with a capacitor, inductors are important when
the voltage and current change with time, and the response depends on the
frequency.

LiWiNeiile VI WiTeUiL el y i

The inductance L of a circuit element is defined to be

_No

s

where N is the number of turns in the solenoid and & is the magnetic flux
in the solenoid generated by the current /. The SI unit of inductance is the
Tesla- m*/Ampere, or the Henry (H).

Now if the current I through the inductor coil is changing, then the
magnetic flux is changing and this sets up a voltage in the coil that opposes
the change in the current. The magnitude of this voltage drop is

d(N®) dl
V=— - =L—,
dt dt

If we write V. = [IZ, where Z is the impedance of the inductor, and
I = Ipe'”  then V = iwlL]! or

L

Z =iwl. (3.11)

We can use this impedance to calculate, for example, V,, for the gener-
alized voltage divider of Fig. 3.7 if one or more of the components is an
inductor.

You can now see that the inductor is, to a large extent. the opposite of
a capacitor. The inductor behaves as a short (that is, just the wire it is) at
low frequencies, whereas a capacitor is open in the DC limit. On the other
hand, an inductor behaves as if the wire were cut (an open circuit) at high
frequencies, but the capacitor is a short in this limit.

One particularly interesting combination is the series LC R circuit, com-
bining one of each in series. The impedance of such a string displays the
phenomenon of “resonance.” That is, in complete analogy with mechanical
resonance, the voltage drop across one of the elements is a maximum for
a certain value of w. Also, as the frequency passes through this value, the
relative phase of the output voltages passes through 90°, If the resistance
R is very small, then the output voltage can be enormous, in principle.

3.1.4. Diodes and Transistors

Resistors, capacitors, and inductors are “linear” devices. That is. we write
V. = 1Z, where Z is some (complex) number, which may be a function
of frequency. The point is, though, that if you increase V by some factor,
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then you increase / by the same factor. Diodes and transistors are exam-
ples of “nonlinear” devices. Instead of talking about some impedance Z,
we instead consider the relationship between V and / as some nonlinear
function. What is more, a transistor is an “active” device, unlike resistors,
capacitors, inductors, and diodes, which are “passive.” That is, a transistor
takes in power from some voltage or current source, and gives an output
that combines that input power with the signal input to get a response. It
used to be that many of these functions were possible with vacuum tubes
of various kinds. These have been almost completely replaced by solid-
state devices based on semiconductors. The physics of semiconductors and
semiconductor devices was discussed in Sections 2.1 and 2.4.

The symbol for a diode is » where the arrow shows the nominal direc-
tion of current flow. An ideal diode conducts in one direction only. That
is. its VI curve would give zero current / for V < 0 and infinite / for
V = 0. (Of course. in practice, the current / is limited by some resistor
in series with the diode.) This is shown in Fig. 3.9a. A real diode, how-
ever, has a more complicated curve, as shown in Fig. 3.9b. The current
I changes approximately exponentially with V. and becomes very large
for voltages above some forward voltage drop V. For most cases, a good
approximation is that the current is zero for V' < Vg and unlimited for
V > Vg. Typical values of Vg are between 0.5 and 0.8 V.

Diodes are pn junctions. These are the simplest solid-state devices, made
of a semiconductor, usually silicon. The electrons in a semiconductor fill
an energy “band” and normally cannot move through the bulk material, so
the semiconductor is really an insulator. If electrons make it into the next

(a) / (b) [

V=0 v v

FIGURE 3.9 Current [ versus voltage V for (a) the ideal diode and (b) a real diode.
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energy band, which is normally empty, then they can conduct electricity.
This can happen if. for example, electrons are thermally excited across the
energy gap between the bands. For silicon, the band gap is 1.1 eV, but the
mean thermal energy of electrons at room temperature is ~k7 = 1/40 eV.
Therefore, silicon is essentially an insulator under normal conditions, and
not particularly useful.

That is where the p and n come in. By adding a small amount (around
10 parts per million) of specific impurities, lots of current carriers can
be added to the material. These impurities (called dopants) can precisely
control how current is carried in the semiconductor. Some dopants, like
arsenic, give electrons as carriers, and the doped semiconductor is called
n-type, since the carriers are negative. Other dopants, like boron, bind
up extra electrons, and current is carried by “holes™ created in the other-
wise filled band. These holes act like positive charge carriers, so we call
the semiconductor p-type. In either case, the conductivity increases by a
factor of ~1000 at room temperature, and this makes some nifty things
possible.

So now back to the diode, or pn junction. This is a piece of silicon,
doped p-type on one side and n-type on the other. Electrons can only flow
from p to n. That is, a current is carried only in one direction. A detailed
analysis gives the /-V curve shown in Fig. 3.9b. See Dunlap (1988 full
citing in Section 3.10) for more details. If you put voltage across the diode
in the direction opposite to the direction of possible current flow, that is
called a “reverse bias.” A small “leakage™ current flows as shown in Fig.
3.9b. If you put too much of a reverse bias on the diode, i.e., V < —VF"‘.
it will break down and start to conduct. Typical values of Vg"" are 100V
or less.

Transistors are considerably more complicated than diodes,” and we will
only scratch the surface here. The following summary closely follows the
introduction to transistors in The Art of Electronics (full citing in Section
3.10). For details on the underlying theory, see Dunlap (1988). A transis-
tor has three terminals, called the collector, base, and emitter. There are
two main types of transistors, namely npn and pnp, and their symbols are
shown in Fig. 3.10. The names are based on the dopants used in the semi-
conductor materials. The properties of a transistor may be summarized in

Y . . g . . . h . &
“The invention of the transistor was worth a Nobel Prize in Physics in 1956.
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FIGURE 3.10  Symbols for npn and pnp transistors.

the following simple rules for npn transistors. (For pnp transistors, just
reverse all the polarities.)

1. The collector must be more positive than the emitter.

2. The base—emitter and base—collector circuits behave like diodes.
Normally the base-emitter diode is conducting and the
base—collector diode is reverse-biased.

3. Any given transistor has maximum values of /¢, Ip, and Vg
that cannot be exceeded without ruining the transistor. If you are
using a transistor in the design of some circuit, check the
specifications to see what these limiting values are.

4. When rules 1-3 are obeyed, /¢ is roughly proportional to /5 and
can be written as /¢ = hpglg. The parameter h p g, also called
B. 1s typically around 100. but it varies a lot among a sample of
nominally identical transistors.

Obviously, rule 4 is what gives a transistor its punch. It means that a
transistor can “amplify” some input signal. It can also do a lot of other
things, and we will see them in action later on.

3.1.5. Frequency Filters

Simple combinations of passive elements can be used to remove “noise”
from a voltage signal. If the noise that is bothering you is in some specific
range of frequencies, and you can make your measurement in some other
range, then a frequency filter can do a lot for you. Frequency filters are
usually simple circuits (or perhaps their mechanical analogs) that allow
only a specific frequency range to pass from the input to the output. You then
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make your measurement with the output. Of course, you need to be careful
of any noise introduced by the filter itself. The circuit shown in Fig. 3.6 is
a “low-pass” filter. It exploits the frequency dependence of the capacitor
impedance Z¢ = 1/iwC to short frequencies much larger than 1/RC to
ground, and to allow much smaller frequencies to pass. As we showed
carlier, the ratio of the output to input voltage as a function of frequency
v =w/2m is (1+0?R*C*)~1/2. You can also use inductors in these simple
circuits. Remember that whereas a capacitor is open at low frequencies
and a short at high frequencies, an inductor behaves just the opposite.
Figure 3.11 shows all permutations of resistors, capacitors, and inductors,
and whether they are high- or low-pass filters.

Suppose you only want to deal with frequencies in a specific range.
Then, you want a “bandpass” filter, which cuts off at both low and high
frequencies, but lets some intermediate bandwidth pass through. Consider
the circuit shown in Fig. 3.12. The output voltage tap is connected to ground

Circuit Type Circuit Type

—'\N\T

Low pass = High pass
*=
VT —]

T Low pass High pass

va—’_— —A—
T Low pass é High pass

FIGURE 3.11  Simple passive frequency filters.

vln A voul

c L

L

FIGURE 3.12 A simple bandpass filter.
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through either a capacitor or an inductor. Therefore, the output will be zero
at both low and high frequencies. Analyzing this filter circuit is simple

Vow _ _Zrc
Vi Zr+Zic’

B N I ;
where Zg = Rand Zrc = (Z;' + Z¢')" with Z;, = 1/iwL and
Z¢ = iwC. (Note that L and C are connected in parallel.) The resultis

1/2
R? s D
[l + —,,?(] = (:J'LC}‘]

WL~

and as advertised, ¢ — Oforbothw <« R/L and forw > 1/RC. However,
frequencies near v = /27 = 1/(27+/LC) are passed through with little
attenuation. At o = 1/v/LC, g = 1 and there is no attenuation at all. Can
you see how to build a “notch™ filter, or “band reject” filter, that allows all
frequencies to pass except those in the neighborhood of w = 1//LC?

3.2. BASIC ELECTRONIC EQUIPMENT

3.2.1. Wire and Cable

Connections between components are made with wires. We tend to neglect
the importance of choosing the right wire for the job, but in some cases
it can make a big difference. The simplest wire is just a strand of some
conductor, most often a metal such as copper or aluminum. Usually the wire
is coated with an insulator so that it will not short out to its surroundings,
or to another part of the wire itself. If the wire is supposed to carry some
small signal, then it will likely need to be “shielded.” that is, covered with
another conductor (outside the insulator) so that the external environment
does not add noise somehow. One popular type of shielded wire is the
“coaxial cable,” which is also used to propagate “pulses.”

Do not forget about Ohm’s law when choosing the proper wire. That
is, the voltage drop across a section of wire is still V. = [IR. and
you want this voltage drop to be small compared to the “real” voltages
involved. The resistance R = p x L/A, where L is the length of the
wire, A is its cross-sectional area, and p is the resistivity of the metal.
Therefore, to get the smallest possible R. you keep the length L as short
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as practical, get a wire with the largest practical A.} and choose a con-
ductor with small resistivity. Copper is the usual choice because it has
Jow resistivity (p = 1.69 x 107% Q-cm) and is easy to form into wire
of various thicknesses and shapes. Other common choices are aluminum
(p = 2.75 x 107% Q-cm), which can be significantly cheaper in large
quantities, or silver (p = 1.62 x 10~% Q-cm), which is a slightly better
conductor, although not usually worth the increased expense.

The resistivity increases with temperature. and this can lead to a partic-
ularly insidious failure if the wire must carry a large current. The power
dissipated in the wire is P = IR, and this tends to heat it up. If there is
not enough cooling by convection or other means, then R will increase and
the wire will get hotter and hotter until it does serious damage. This is most
common in wires used to wind magnets, but can show up in other high-
power applications. A common solution is to use very-low-gage (i.e., very
thick) wire which has a hollow channel in the middle through which water
flows. The water acts as a coolant to keep the wire from getting too hot.

A coaxial cable is a shielded wire. The name comes from the fact that the
wire sits inside an insulator, another conductor, and another insulator, all
in circular cross section sharing the same axis. A cutaway view is shown in
Fig. 3.13. Coaxial cable is used in place of simple wire when the signals are
very small and are likely to be obscured by some sort of electronic noise
in the room. The outside conductor (called the “shield”) makes it difficult
for external electromagnetic fields to penetrate to the wire. and minimizes
the noise. This outside conductor is usually connected to ground.

A second, and very important, use of coaxial cable is for “pulse trans-
mission.” The wire and shield, separated by the dielectric insulator, act as
a waveguide and allow short pulses of current to be transmitted with little
distortion from dispersion. Short pulses can be very common in the labo-
ratory, in such applications as digital signal transmission and in radiation
detectors. You must be aware of the “characteristic impedance™ of the cable
when you use it in this way.

Coaxial cable has a characteristic impedance because it transmits the
signal as a train of electric and magnetic fluctuations, and the cable itself has
characteristic capacitance and inductance. The capacitance and inductance
of acylindrical geometry like this are typically solved in elementary physics

3Wire diameter is usually specified by the “gage number.” The smaller the wire gage.
the thicker the wire, and the larger the cross-sectional area.
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FIGURE 3.13  Cutaway view of coaxial cable,

texts on electricity and magnetism. The solutions are

2 _ BN
P ot ¥ and L=l (—) x 2,
In(h/a) 2

where @ and b are the radii of the wire and shield respectively, € and p are
the permittivity and permeability of the dielectric, and € is the length of the
able. Itis very interesting to derive and solve the equations that determine
pulse propagation in a coaxial cable, but we will not do that here. One
thing you learn, however, is that the impedance seen by the pulse (which
is dominated by high frequencies) is very nearly real and independent of
frequency, and equal to

(L. 1 [u b
= ==—/— -]. 3.12
%e \/C 2 \/ € in (a) 3-4e)

This “characteristic impedance™ is always in a limited range, typically
50 < Z. < 200, owing to natural values of € and u, and to the slow
variation of the logarithm.

You must be careful when making connections with coaxial cable. so
that the characteristic impedance Z. of the cable is “matched” to the
load impedance Z;. The transmission equations are used to show that
the “reflection coefficient” I', defined as the ratio of the current reflected
from the end of the cable to the current incident on the end. is given by

r = ZL = Zl.'
CZL+Z
That is, if a pulse is transmitted along a cable and the end of the cable is not
connected to anything (Z; = o), then I' = 1 and the pulse is immediately
reflected back. On the other hand, if the end shorts the conductor to the
shield (Z; = 0), then I' = —1 and the pulse is inverted and then sent
back. The ideal case is when the load has the same impedance as the cable.
In this case, there is no loss at the end of the cable and the full signal
is transmitted through. You should take care in the lab to use cable and

ik WHYIY LIFTVMVIIVY BHWIPIHENL wr

electronics that have matched impedances. Common impedance standards
are 50 and 90 €.

Of course, you will need to connect your wire to the apparatus somehow,
and this is done in a wide variety of ways. For permanent connections,
especially inside electronic devices, solder is usually the preferred solution.
It is harder than you might think to make a good solder joint, and if you
are going to do some of this, you should have someone show you who
has a decent amount of experience. Another type of permanent connection,
called “crimping,” squeezes the conductors together using a special tool
that ensures a good contact that does not release. This is particularly useful
if you cannot apply the type of heat necessary to make a good solder
joint.

Less permanent connections can be made using terminal screws or bind-
ing posts. These work by taking a piece of wire and inserting it between two
surfaces that are then forced together by tightening a screw. You may need
to twist the end of the wire into a hook or loop to do this best, or you may
use wire with some sort of attachment that has been soldered or crimped
on the end. If you keep tightening or untightening screws, especially onto
wires with handmade hooks or loops, then the wire is likely to break at
some point. Therefore, for temporary connections, it is best to use alliga-
tor clips or banana plugs, or something similar. Again, you will usually
use wires with this kind of connector previously soldered or crimped on
the end.

Coaxial cable connections are made with one of several special types of
connectors. Probably most common is the “bayonet N-connector,” or BNC,
standard, including male cable end connectors, female device connectors,
and union and T-connectors for joining cables. In this system, a pin is
soldered or crimped to the inner conductor of the cable, and the shield is
connected to an outer metal holder. Connections are made by twisting the
holder over the mating connector, with the pin inserting itself on the inner
part. Another common connector standard, called “safe high voltage™ or
SHV., works similarly to BNC, but is designed for use with high DC voltages
by making it difficult to contact the central pin unless you attach it to the
correct mate.

For low-level measurement you must be aware of the thermal elec-
tric potential difference between two dissimilar conductors at different
temperatures. These “thermoelectric coefficients” are typically around
I 1V/°C, but between copper and copper-oxide (which can easily happen
if a wire or terminal is oxidized) it is around 1 mV/°C.



