ELECTRONICS

This chapter discusses electronics at a level somewhere
between that of a handbook, which consists essentially of
charts, tables, and graphs, and a textbook, where the
interesting, important, and useful conclusions come only
after well-developed discussions with examples. The aim
here is a presentation that has sufficient continuity and
readability that individual sections can be profitably read
without having to refer to preceding sections or other
texts. On the other hand, it is important to have useful
and frequently referenced material in the form of readily
accessible tables, graphs, and diagrams that are suffi-
ciently self-explanatory that very little reference to the
text material is necessary. Another important goal is
vocabulary. A large amount of jargon in electronics is
meaningless to the uninitiated, but when it is necessary
to understand the properties of an electronic device from
a written technical description, when writing the specifi-
cations for electronic equipment, or when talking to an
electronics engineer, salesman, or technician, this
vocabulary is essential. With this in mind, terms not cur-
rent outside of electronics are italicized.

To be used to best advantage, this chapter should be
supplemented with manufacturers’ catalogs, data books,
applications texts, handbooks, and more specialized
texts that treat the topic of interest in depth. Manufac-
turers of laboratory electronic equipment, discrete devi-
ces, and integrated circuits have publications that
describe, in clear practical terms, the properties of their
products and their applications to a wide variety of tasks.
Much of this material is also available on the internet,
and for this reason internet addresses are given when
available.

The material has been organized and written as
one explains it to a student or technician coming to work
in a laboratory for the first time. The complexity of
modern electronics is such that the cut-and-try approach
is too inefficient and costly in terms of material and
time. There are just too many possibilities when con-
necting devices and multiple-component circuits,
and it is important to establish a systematic approach
based on a limited number of simple, well-understood
principles. It is probably not reasonable in the laboratory
to expect quick solutions to problems that are entirely
outside one’s previous experience. The number of
really new situations that can arise is limited, however,
most problems being variations on a few basic situations.
The ability to recognize this and to isolate the source
of difficulty comes with practice and mastery of basic
principles. When confronted with a new situation involv-
ing rack upon rack of equipment, the tendency is to
believe that an understanding of how everything works
is beyond the capabilities of all but expert electronics
engineers. This is far from the truth. At the operational
level, present-day electronics is the most reliable, easy-to-
use, and easy-to-understand element of most experiments.

6.1 PRELIMINARIES
6.1.1 Circuit Theory

An understanding of elementary circuit theory and the
accompanying vocabulary permits one to reduce com-
plex circuits consisting of many elements to a few

362



PRELIMINARIES 363

essentials, predict the behavior of complex circuits,
specify the operation of components, and understand
and use data sheets and operation manuals. In routine
laboratory work, it is not necessary to be skillful with
circuit theory. It is necessary to be able to isolate the
basic elements of a circuit and understand their behav-
ior. With that ability, when circuits fail to operate cor-
rectly, the causes of the malfunction can be localized
and repaired.

Linear circuit theory applies to devices whose output
is directly proportional to the applied input. If one
increases the current through a resistor by a factor
of two, for example, the voltage across it will double.
An example of a nonlinear device is a switch that is
either open or closed and whose state changes abruptly
at a threshold. A nonlinear device can often be treated
with linear theory by dividing the response of the
device into separate regions over which it behaves in a
quasi-linear manner. This is called linearizing the
response curve. An example is the piecewise lineariza-
tion of a diode’s current—voltage response, as shown
in Figure 6.1. The exponentially rising forward current
and constant reverse current are represented by straight
lines of slope 1/Ry and 1/R,, which are joined at
voltage V.

We begin by considering only passive linear devices;
that is, devices that either dissipate energy (resistors) or
store energy in electric (capacitors) or magnetic (inductors,
transformers) fields. Active devices, such as transistors, can
supply energy to a circuit when appropriately powered by
external sources. The analysis of circuits with active devi-
ces is based on representations using equivalent circuits
consisting of passive devices.

Conventional circuit analysis uses three lumped circuit
elements — resistors (R), capacitors (C), and inductors (L).
This way of analyzing circuits is valid at signal frequencies f
for which the wavelength A is much larger than the physical
dimensions of the circuit. Since A = c/f, where c is the speed
of light, this means that analysis in terms of lumped elements
is valid up to frequencies of a few hundred megahertz.

This frequency limitation also excludes waveforms with
significant frequency components above a few hundred
megahertz, even though the repetition rate of the waveform
may be much less. A convenient way to estimate the fre-
quency of the highest-frequency component of a nonsinu-
soidal waveform is to divide 0.3 by the rise time of the
waveform, t,, defined as the time between the 10% and
90% amplitude points on the leading edge of the wave-
form. A pulse with a 10 ns rise time, for example, has
significant frequency components up to 30 MHz. The fall
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Figure 6.2 Rise time (t;) and fall time (t;) of a pulse.

time, t; of a waveform is the time between the 10% and
90% amplitude points on the trailing edge. Figure 6.2
illustrates rise time and fall time.

Even at low frequencies there are no ideal resistors, capaci-
tors, or inductors. Actual resistors have some capacitance and
inductance, while capacitors have resistance and inductance,
and inductors have resistance and capacitance. These depar-
tures from ideality are largely a matter of construction.

At high frequencies, stray capacitances and inductances
become significant, and one commonly speaks of distributed
parameters, in contrast to the lumped parameters at low fre-
quencies. Coaxial cable is an example of a type of distributed
parameter circuit. The electrical properties of coaxial cable
are normally given in terms of resistance and attenuation
per unit length as a function of frequency. At high frequen-
cies, the resistance of conductors (even connecting wires)
increases due to what is termed skin effect. The magnitude
of this effect for round cross-section wires is given in Table
6.1 as a function of frequency. High-frequency connections

Table 6.1 Ratio of a.c to d.c wire resistance

Wire Gauge R./Rye

10° Hz 107 Hz 108 Hz 10° Hz
#22 6.9 21.7 69 217
#18 10.9 34.5 109 345
#14 17.6 55.7 176 557
#10 27.6 87.3 276 873

are best made with leads having a large surface area-to-
volume ratio, with flat-ribbon geometry the best.

Conventional circuit theory is based on a few laws, prin-
ciples, and theorems. In the equations that follow, lowercase
letters represent instantaneous values of voltage and current,
whereas uppercase letters indicate effective or d.c. values. It
is also convenient to distinguish between root-mean-square
(rms), peak-to-peak, and average values of voltage and cur-
rent for sinusoidally varying voltages. If v = Vcos wt, where
v is the instantaneous value of voltage and V is the peak
value, the rms value is V/ \/§ the peak-to-peak value is 2V,
and the average value is clearly zero. This is illustrated in
Figure 6.3. Common US line voltage is specified as 110 V
a.c., which is the rms value. The peak voltage is 156 V, so
the peak-to-peak voltage is 312 V.

Under certain conditions, the rms value is not sufficient
for specifying the output of an a.c. source. A source produc-
ing voltage spikes of large amplitude, but short duration
superimposed on a small sinusoidally varying voltage will
have an rms value very close to that without the spikes, but
the spikes can have a large effect on circuits connected to the
source. When specifying the output of a d.c. power supply,
the magnitude, frequency, and duration of nonsinusoidal
waveforms that appear at the output need to be specified,
as well as the rms value of any a.c. component of the output.

Laws

(i) Current—voltage relations. For resistors, capacitors,
and inductors we have:
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Figure 6.3 Relation of rms and peak-to-peak voltages for a
sinusoidal waveform.
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respectively, where the resistance R is in ohms; the capaci-
tace C in farads; and the inductance L in henrys.

(ii) Loops and nodes (Kirchhoff’s laws). In these, the
sums are algebraic (signs taken into account):

(1) X (voltage drops around a closed loop) = X (voltage
sources).

(2) X (current into a node) = X (current out of a node),
where a node is a point where two or more elements
have a common connection.

Theorems

(i) Thevenin’s theorem. A real voltage source in a circuit
can always be replaced by an ideal voltage source in series
with a generalized resistance. An ideal voltage source is
one that can maintain a constant voltage across its termi-
nals regardless of the load across it. In other words, an
ideal voltage source has zero internal resistance. An auto-
mobile battery, with an internal resistance of a few hun-
dredths of an ohm, is a good approximation to an ideal
voltage source at currents of a few amperes. Electronically
regulated power supplies often have very low effective
internal resistances when operated within their voltage
and current ratings.

(ii) Norton’s theorem. A real current source in a circuit
can always be replaced by an ideal current source shunted
by a generalized resistance. An ideal current source is one
that supplies a constant current regardless of load — such a
source has an infinite internal resistance. Photo-multiplier
and electron-multiplier devices provide currents, albeit
very low, that are almost independent of load, and they
approximate ideal current sources.

Superposition, Circuits with Multiple
Sources

For a circuit that contains several sources (voltage, current,
or a combination of both) the contribution of each source
to the voltage between any two points or the current past a
point can be considered separately with all the other sour-
ces represented by their internal resistances. The total volt-
age or total current is then the algebraic sum of the separate
contributions of each of the individual sources.

When connecting a source of current or voltage to a
circuit, it is often important to know the internal resistance
of the source. This can be determined by first measuring the
open-circuit voltage of the source with a high internal-
resistance voltmeter and then connecting a variable
resistance across the source and adjusting it until the volt-
meter reading is one half the open-circuit value. The source
resistance is then equal to the value of the variable-resist-
ance setting. If the source has a very high internal resistance,
a current measurement can be substituted for the voltage
measurement. In this case, the output is shunted with an
ammeter and the so-called short-circuit current is measured.
A variable resistance is then placed in series with the
ammeter and adjusted until the current through the ammeter
is one half the short-circuit current. The value of the variable
resistor at this point is equal to the internal resistance of the
source. Analogous measurements can be made for a.c. sour-
ces by using either a.c. voltmeters and ammeters or an
oscilloscope.

6.1.2 Circuit Analysis

For any given source, the choice of representation (Thevenin
or Norton) is arbitrary and, in fact, the series resistance in the
Thevenin representation is exactly equal to the parallel
resistance in the Norton representation. Thevenin’s and
Norton’s theorems simplify the application of the laws and
principles discussed above.

The most general method for solving circuit problems is
to apply Kirchhoff’s laws using the appropriate current—
voltage relations for each element in the circuit. This gives
rise to one or more linear differential equations, which,
when solved with the proper boundary conditions, give
the general solution. This is illustrated for RC circuits in
Section 6.1.3.

When dealing with sinusoidal sources of angular fre-
quency o, circuit analysis can be greatly simplified when
only the steady-state solution is required. In this case, circuit
capacitances and inductances are replaced by reactances:

-1
where X¢c = —
wC

where X = oL

capacitive reactance = jX,

inductive reactance = jX|, (6.2)

j=v-1
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The impedance Z of a circuit is obtained by combining
reactances and resistances according to the formula
Z =R + j(X. + Xc). These quantities can be represented
in the complex plane by vectors (see Figure 6.4). The
angle between Z and the real axis is ¢. By analogy with
the /-V relations for a pure resistance, X¢ is the ratio of
the a.c. voltage across a capacitor to the current through
it, X is the ratio of the a.c. voltage across an inductor to
the current through it, and Z is the net ratio of a.c. voltage
to current in a circuit composed of resistors, capacitors,
and inductors.

The fact that jXc and jX; are imaginary means that the
voltage and current are 90° out of phase with each other.
For a capacitor, the voltage lags the current by 90°, while
for an inductor the voltage leads the current by 90°.

Another quantity that is occasionally useful in circuit
analysis is the complex admittance Y, which is the recip-
rocal of the impedance. The SI unit of admittance is the
siemen. The usefulness of the admittance arises in circuits
with several parallel branches, where the net admittance is
the sum of the admittances of the branches.

In carrying out circuit analysis, the following results of
the above laws are useful:

Series Circuits. At any instant the current is the same
everywhere in a series circuit, and the algebraic sum of
the voltage drops around a circuit equals the algebraic
sum of the sources. For circuit elements of impedance
Z\, Zy, ..., Zy in an N element series circuit, the total

lmZ|

T—Z = R+A(X +X)

@=arctan ( _X\-_'*xi)
R

ReZ

Figure 6.4 Relations between reactance, resistance,
impedance, and phase angle.

impedance isZ =2, + Z, + - - - + Zy. If all the elements
are resistors, or inductors, or capacitors, the general
expression reduces, respectively, to:

R:R1—|—R2+—|—RN

Parallel Circuits. For circuit elements in parallel, the
voltage drop across each branch is the same while the
current through each branch is inversely proportional to
the impedance of the branch. The total current through
all of the branches is the voltage across the network
divided by the equivalent impedance for the network.
The equivalent impedance Z and admittance Y for an N
branch parallel circuit are:

1 1 1 1

Z:Z—1+Z~2+-~-+Z (6.4)
and:

Y=Y +Y,+ -+ Yy (6.5)
where Z,, Z,, .. ., Zy are the impedances of the branches
and Yy, Ys, . .., Yy are the admittances. In the special cases

where all the circuit elements in the branches are of the
same type:

1 1 1 1

R R R TRy
C=Ci+Cr+---+Cy (66)
b Ao 1 !

L L LT

where R, C, and L are the net resistance, capacitance, and
inductance of the circuits.

Voltage Dividers. The voltage divider, illustrated in
Figure 6.5(a), is a very common circuit element. The
instantaneous voltage across Zy is vi,[Zn/(Z) +Z, +
Z3 + -+ + Zy)]; that is, the fraction of v;, that appears
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Figure 6.5 (a) The voltage divider; (b) the Thevenin
equivalent.

across any circuit element is the impedance of that ele-
ment divided by the total impedance of the series circuit.
Voltage dividers provide a convenient way to obtain a
variable-voltage output from a fixed-voltage input, but
there are limitations. To avoid drawing too much current
from the voltage source, the impedance of the voltage

divider string should not be too small. If, in the interest of
conserving power, however, the impedance is made
large, the output impedance of the circuit will be large
and v, will depend critically on the load. This can be
seen from the Thevenin equivalent of the circuit given in
Figure 6.5(b) where v, is the instantaneous voltage of the
ideal voltage source. When Z; is large, the voltage across
a load will depend critically on the value of the load.
Such loading of a divider is to be avoided. For noncritical
applications, Z; should be at most 1/10 of any anticipated
load.

Precision, highly linear, multiturn potentiometers are
commonly used for position sensing. In this application,
the shaft of the potentiometer is coupled mechanically
to the moveable element whose position is to be
determined, and a stable voltage source is connected
across the ends of the potentiometer. The ratio of the
voltage from the variable contact of the potentiometer
to its end gives the angle through which the shaft has
rotated.

Equivalent Circuits. Two circuits are equivalent if
the relationships between the measurable currents and
voltages are identical. As has been seen, a circuit with
two external terminals can be replaced by its Thevenin or
Norton equivalent. Common equivalence transformations
for circuits with three terminals (Miller and Y-A trans-
formations) are shown in Figures 6.6 and 6.7. In the first
Miller transformation of Figure 6.6, it is necessary to
know the ratio of the voltages at nodes 1 and 2; in the
second it is necessary to know the ratio of the currents
into nodes 1 and 2.

Discussions of amplifier circuits often refer to the
Miller effect. This occurs when the input and output
circuits of the amplifier are coupled by an impedance
Z'. By using the transformation in Figure 6.6, Z’ between
input terminal 1 and output terminal 2 can be transformed
into an equivalent circuit where Z’ is replaced by Z, and
Z, from terminals 1 and 2 to ground. The relations between
Zy,Z,, and Z' are given in the figure. When the coupling
between terminals 1 and 2 is capacitive with Z' = 1/jwC’,
Z, and Z, are also capacitive impedances equal to
1/jwC' (1 — K) and 1/jwC' K/(K — 1), where K is the voltage
gain of the amplifier, negative for the example shown in
Figure. 6.6.
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Figure 6.8 (a) High-pass or differentiating circuit; (b) low-pass or integrating circuit.

The Y-A transformation allows one to transform a cir-
cuit of three elements from a node to a loop configuration.

6.1.3 High-Pass and Low-Pass Circuits

Analysis of the high-pass and low-pass circuits shown in
Figure 6.8 illustrates some of the above circuit-analysis
principles. The combination of v, and R, represents a real
voltage source with instantaneous open-circuit voltage vy
and internal resistance R;. For the high-pass or differentiat-
ing circuit, the output voltage v, is across the resistor R;
for the low-pass or integrating circuit, it is across
the capacitor C. Very often, the essential properties of
complex circuits can be understood in terms of one of
these two circuits, so it is useful to be acquainted with
their characteristics.

These circuits can be analyzed by the differential-
equation method. For either circuit:

1
vy(t) = iR, +6Jidt+ iR (6.7)

This equation uses the fact that the sum of the voltage drops
in the circuit equals the sum of the voltage sources and the
current is the same everywhere in a series circuit at any
instant. Differentiating with respect to time:

dvs_di(R +R)+i
dr de° C

The solution to the homogeneous equation (dvy/dt = 0) is:

i=Ae/RC (6.9)

where R' = Ry + R and A is the integration constant
determined from the initial conditions. The general
solution requires that the functional form of v, be
known. Consider three cases:

(1) An a.c. voltage of amplitude V:

vs = Vcos(wt + ¢) (6.10)
(2) A step voltage of amplitude V:
Oforr<O0
VS_{Vfort>O (6.11)

(3) A rectangular pulse of amplitude V and duration T:

S
Vs_{VforO<t T (6.12)

Viort<0,t>T

For case 1, the output voltage is sinusoidal at the same
frequency as the input voltage. The ratio of v, to v as a
function of normalized frequency is shown in Figure 6.9(a).
At the frequencies w = wy and w = w, for the two circuits,
Vo is 1/4/2 of the maximum value. These frequencies are
called the upper and lower corner frequencies, respectively.

The maximum power that can be delivered to a load is
proportional to the square of the output voltage, so that at
o = wy and ® = o, the maximum power that the circuits
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Figure 6.9 Output voltage as a function of frequency for: (a) high-pass and (b) low-pass
circuits; phase as a function of frequency for: (c) high-pass and (d) low-pass circuits.

can deliver to a constant load is one-half the maximum
possible value. The usual way of expressing this is in terms
of decibels dB, where:

t
ratio in dB = 101og,, (pOWer ou )

power in

vgut/ Rout)

—— 6.13
vizn/Rin ( )

If Rout = R;n, which is often assumed, then (ratio in dB) =
20 logio[Vou/Vinl- When voy /vin=1/1/2, this is approx-
imately —3, so that —3 dB represents a power reduction
of a factor of two. Since the frequency response of ampli-

fiers, filters, and transducers is routinely given in dB, it is
important to keep in mind that the dB scale is logarith-
mic. Human sensory perception is approximately loga-
rithmic, and a 3 dB change in sound level or light level is
barely perceptible.

Because of the reactive element in the RC circuits (the
capacitor), the voltage is not in phase with the current, as
illustrated in Figure 6.9(b). These plots of phase and log
(output voltage) as a function of log(frequency) are called
Bode plots, after H. W. Bode.'

It is often convenient to approximate frequency-
response curves by a piecewise linear function. Such ideal-
ized Bode plots are shown in Figure 6.10(a) and (b). The
corner frequencies are where w/wy and w/wy = 1.0.
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Figure 6.10 Idealized gain response for (a) high-pass and (b) low-pass circuits; idealized
phase response for (c) high-pass and (d) low-pass circuits

They correspond to the —3 dB points on the unapproxi-
mated Bode plots. For most purposes, the simplified curves
are satisfactory representations. From these curves, every
10-fold reduction in frequency below w; for the high-pass
circuit decreases the output voltage by 20dB, and every
twofold reduction decreases it by 6 dB. The low-pass cir-
cuit has just the opposite properties: a 10-fold increase in
frequency above wy results in a 20 dB decrease in output
voltage, and a twofold increase results in a 6 dB decrease.
One often states these facts as 20 dB per decade and 6 dB
per octave. The linearized phase-response curves are
shown in Figure 6.10(c). The —3 dB frequencies occur at
a phase shift of —mn/4 (—45°) for the two circuits.

For the nonrepetitive input voltage waveforms of cases (2)
and (3), the output waveforms are given in Figure 6.11.

The output, waveforms for the rectangular-wave
input function can be used to determine the RC time
constants for differentiating and integrating circuits.
This is called square-wave testing. The RC time con-
stant for the differentiating circuit is obtained by using a
square-wave input with a rise time much smaller than
RC and a period much larger than RC. For times small
compared with RC, the tilt of the top edge of the output,
as viewed with a fast-rise-time oscilloscope (see Figure
6.12) is directly related to RC. The fractional decrease in
Vo, IN time ¢ is ¢;/RC, which can be set equal to (V — V')/V
and solved for RC. For the integrating circuit, RC is
obtained by measuring the rise time of the output waveform
on a fast-rise-time oscilloscope. Using the definition of
the rise time t,, as the time between the 10% and 90% points
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Figure 6.11 Response of high-pass and low-pass circuits to a step voltage (a) and a

rectangular pulse of duration T (b).

on the leading edge of the output waveform, one has the

relation:

ty =2.2RC

(6.14)

6.1.4 Resonant Circuits

The voltages and currents in circuits with capacitors, induc-
tors, and resistors show oscillatory properties much like
those of mechanical oscillators. Electronic circuits have
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natural frequencies of oscillation and can be critically
damped, underdamped, or overdamped, depending on
the relations between the values of the circuit parameters.
Resonant circuits with ideal capacitors and inductors are of
the series or parallel type shown in Figure 6.13. When driven
by a sinusoidal input source, the capacitative reactance in the
series circuit will cancel the inductive reactance at the
resonant frequency w,, where 1/Cow, = w,L and
W, = y/1/LC. At w, the impedance of the series circuit is
a minimum and the current through it is a maximum.

For the parallel resonant circuit at low frequencies, the
L branch will have a very low reactance and the current
drawn from the source will flow almost entirely through
that branch. At high frequencies, the current through the
RC branch is limited by the value of R. The total impe-
dance of the parallel circuit is therefore small at low and
high frequencies, passing through a maximum at the fre-
quency w, = 1/1/LC, provided that R << w,L. Graphs of
the currents in the two circuits as a function of driving
frequency are given in Figure 6.14. Real inductors have
an associated resistance, which generally must also be
taken into account when analyzing circuits.

One measure of the resonance sharpness in the series and
parallel circuits is the Q or quality of the circuit. For prac-
tical purposes, Q = w,/Aw where Aw is the full width at
half maximum of the peak or valley. In terms of the circuit
parameters, 1/Q = w,L/R = 1/w,RC. This is the ratio of the
energy stored (in the capacitor or inductor) to the energy
dissipated in the resistor per cycle at resonance. Values of O
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Figure 6.14 Current as a function of frequency for: (a) the series resonant circuit and

(b) the parallel resonant circuit.
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Figure 6.15 Phase relations between voltage and current in: (a) the series resonant

circuit and (b) the parallel resonant circuit.

as large as 100 can be attained in electrical circuits while
mechanical oscillators can attain values as high as 10°. The
phase relationships between voltage and current in series
and parallel resonant circuits are shown in Figure 6.15.
The behavior of an LRC circuit upon the application of a
step or rectangular input is much like the response of a
mechanical system to a sudden impulse. Critically damped,
underdamped, and overdamped current flows result.

6.1.5 The Laplace-Transform Method

A general technique for analyzing circuits for arbitrary
input voltage waveforms is the method of Laplace
transforms. With this method it is possible to use only
algebra and lists of transforms — such as those given in
Table 6.2 — for the solution of differential equations and
the evaluation of boundary conditions. The results of the
method will be presented without any proofs. The
vocabulary of Laplace transforms occurs in the discus-
sion of circuits and is included in this chapter for that
reason.

The method is based on an integral transform of the type:

o J F(e)e~"ds (6.14)
0

where f(s) is the Laplace transform of f{z), written as
< [f(t)]. The function f{z) can involve integrals and dif-

ferentials. When . is applied to the second-order differ-
ential equations that arise in circuit analysis, rather
important simplifications occur and results can often be
written down by inspection. The Laplace transform of
the output voltage v, (s) of a circuit is the Laplace trans-
form of the input voltage v;(s) times the Laplace trans-
form of the transfer function T (s) — the transfer function
being the function relating the output to input. To obtain
T(s), the values of all elements in the circuit are replaced
by their transform equivalents according to the recipe
R — R, C — 1/sC, and L — sL. In the simple case of
the voltage divider, the transfer function is the ratio of the
impedance of the output-circuit element to the total
impedance of the circuit chain. 7(s) is obtained in exactly
the same way, using the equivalences for R, C, and L. In
general, T(s) is in the form of a ratio of two functions of
s, G(s) and H(s), which are polynomials in s:

G(s)
H(s)

T(s) = (6.15)

The values of s for which G(s) is zero are called the zeros
of T(s); the values of s for which H(s) is zero are the
locations of the poles of T(s). In the most general case,
the zeros and poles are complex. The positions of the zeros
and poles of 7(s) in the complex plane give important
information on the properties of the circuit under analysis.
When the poles are complex, they occur in pairs, while
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Table 6.2 Elementary Laplace Transforms

fiye>0) f(s)
o(t) 1
1 1/s
U — 1) 1/s"(n a positive integer)
eﬂl 1
s—a
sin at a
52 + a?
cos at s
52 + a?
sinh at al
2_a2
cosh at S
7))
t . s
—Ssinat m
1 1
5 (sinat — at cos at) e
24° (s? +a?)
4o F(s) — forfo = lim (1)
dr
&*f(r) - _df (1)
— sy — f1. fy = lim>—~
ar sf(s) = sfo —f1: [1 ,g{)l dr
t ol I\ 34/ 1-
of (7)de ;f(s)
(eal _ ebr) 1
a—b (s —a)(s—b)
(aear " bebt) S
a—b (s—a)(s—b)
1 1
a_2 (l — COS at) m
1
= (at — sin at) YRy
a s2(s? + a?)
1 1
2—2~(bsinatfasinbt) *‘ZT—Z
ab(b® — a?) (s2 + a?)(s> 4+ b7)
K
R (cosat — cos bt) W
1 1

e*flt
2+ 5 B2+ b

sin[ft + arg(o + ip)]

s [(s +a)’ + /32]
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Figure 6.16 Laplace-transform equivalents of: (a) the high-pass and (b) the low-pass

circuit.

real-valued poles can occur singly or in pairs. The values of
the real and imaginary components of the pole coordinates,
usually labeled ¢ and w, have important physical meaning.
The real component ¢ is a measure of the damping in the
circuit while the imaginary part w is the natural frequency
of oscillation. Negative values of ¢ give stable circuits in
which transient signals all decay to zero with time. Circuits
employing only passive elements behave in this way and
are stable. Circuits with active elements can behave in such
a way that the output increases with time in response to a
transient input signal. Such circuits are unstable and have
values of ¢ greater than zero. They are to be avoided,
except in the case of oscillators, which must be unstable
in order to function.

The Laplace-transform equivalents of the high-pass
and low-pass circuits are shown in Figure 6.16. For the
high-pass circuit, the output voltage across the resistor R
for the transformed circuit is:

Bo(s) = 7i(s) (6.16)

Ry 1L
(1+ R)+SRC

where T(s), the transfer function, has a pole at s = —1/(R
+ R,)C. For the low-pass circuit, the output voltage across
the capacitor for the transformed circuit is:

1

TEySRC (6.17)

Vo(s) = vs(s) T a

T(s) has a pole at S = —1/(R + R;)C. The steady-state
frequency and phase response of the circuits are obtained
from T(s) by replacing s with jw. The transfer functions
are now, for the high-pass circuit:

1

( R) f =L
and:
T(w) = : (6.19)
w :
L+j(+3)
for the low-pass circuit. For these circuits w; = wy = 1/RC

for Ry|R<<|.
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As seen previously, w; and wy are the corner
frequencies of the circuits. By rationalizing the denomina-
tors of the transfer functions, one obtains the phase
response. Since there are no inductive elements in the cir-
cuits, there is no natural frequency of oscillation. The poles
lie on the negative real axis because there are no active
elements in the circuit to cause sustained oscillations.

6.1.6 RLC Circuits

Consider the equivalent circuit and the Laplace transform
given in Figure 6.17. To analyze the circuit, consider the
parallel combination of R and 1/sC, which is in series with
sL in a voltage-divider configuration:

R/sC R
e (6.20)
R+1/sC 1+sRC
L
A P c ZE 2@
LAPLACE
TRANSFORM
EQUIVALENT
sL
/[sC L
7 () - - %))

Figure 6.17 An RLC circuit and the Laplace-transform
equivalent.

Thus:
5o(s) = B8 T 7 (621)
=) —————— .
Yold Y1+ sL/R + s2LC
The poles of T(s) occur at:
—L/R+/(L/R)* — 4LC
5= / (L/R) (6.22)

2LC

Letting the natural frequency of oscillation of the circuit be
o, = 1/+v/LC, we have Q = R/w,L,, and the poles can be

rewritten as:
:__w"+%‘/1 2 _ 4

There are three different possibilities for the roots of s:

(6.23)

(1) 1/Q* = 4: a single real root at s = —,/2Q
2) I/Q2 — 4 = m* (m real): two real roots at s = —®,/2Q

+ w,m/2.
(3) 1/Q* — 4 = —m? (mreal): two conjugate complex roots
at s = — w,/20 * jw,m/2.

The magnitude of s in the g, jo plane is w,; in geometric
terms this means that the roots of s are confined to a semi-
circle of radius w, in the left half of the complex plane (see
Figure 6.18).
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Figure 6.18 Pole trajectory for an RLC circuit.




