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Figure 1 Resistance in ohms of a specimen of mercury versus absolute temperature. This plot by
Kamerlingh Onnes marked the discovery of superconductivity.
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CHAPTER 10: SUPERCONDUCTIVITY

The electrical resistivity of many metals and alloys drops suddenly to zero
when the specimen is cooled to a sufficiently low temperature, often a temper-
ature in the liquid helium range. This phenomenon, called superconductivity,
was observed [irst by Kamerlingh Onnes in Leiden in 1911, threc years after
he first liquificd helium. At a critical temperature T, the specimen undergoes
a phase transition from a state of normal electrical resistivity to a supercon-
ducting state, Fig. 1.

Superconductivity is now very well understood. It is a field with many
practical and theoretical aspects. The length of this chapter and the relevant
appendices reflect the richness and subtleties of the field.

EXPERIMENTAL SURVEY

In the superconducting state the dc electrical resistivity is zero, or so close
to zero that persistent clectrical currents have been observed to flow without
attenuation in supcrconducting rings for more than a year, until at last the ex-
perimentalist wearied of the experiment.

The decay of supercurrents in a solenoid was studied by File and Mills
using precision nuclear magnetic resonance methods to measure the magnetic
field associated with the supercurrent. They concluded that the decay time of
the supercurrent is not less than 100,000 years. We estimate the decay time
below. In some superconducting materials, particularly those used for super-
conducting magnets, finite decay times are observed because of an irreversible
redistribution of magnetic flux in the material.

The magnetic properties exhibited by superconductors are as dramatic as
their clectrical properties. The magnetic propertics cannot be accounted for
by the assumption that a superconductor is a normal conductor with zero elec-
trical resistivity.

It is an experimental fact that a bulk superconductor in a weak magnetic
field will act as a perfect diamagnet, with zero magnetic induction in the inte-
rior. When a specimen is placed in a magnetic field and is then cooled through
the transition temperature for superconductivity, the magnetic flux originally
present is ejected from the specimen. This is called the Meissner effect. The
sequence of events is shown in Fig. 2. The unique magnetic properties of su-
perconductors are central to the characterization of the superconducting state.

The superconducting state is an ordered state of the conduction electrons
of the metal. The order is in the formation of loosely associated pairs of elec-
trons. The electrons are ordered at temperatures below the transition temper-
ature, and they are disordered above the transition temperature.
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Figure 2 Meissner effect in a superconducting sphere cooled in a constant applied magnetic field;
on passing below the transition temperature the lines of induction B are ejected from the sphere.

The nature and origin of the ordering was explained by Bardeen, Cooper,
and Schrieffer.! In the present chapter we develop as far as we can in an ele-
mentary way the physics of the superconducting state. We shall also discuss
the basic physics of the materials used for superconducting magnets, but not
their technology. Appendices H and I give deeper treatments of the super-
conducting state.

Occurrence of Superconductivity

Superconductivity occurs in many metallic elements of the periodic system
and also in alloys, intermetallic compounds, and doped semiconductors. The
range of transition temperatures best confirmed at present extends from 90.0 K
for the compound YBa,Cu;0; to below 0.001 K for the element Rh. Several
f-band superconductors, also known as “exotic superconductors,” are listed in
Chapter 6. Several materials become superconducting only under high pres-
sure; for example, Si has a superconducting form at 165 kbar, with T, = 8.3 K.
The elements known to be superconducting are displayed in Table 1, for zero
pressure.

Will every nonmagnetic metallic element become a superconductor at
sufficiently low temperatures? We do not know. In experimental searches for
superconductors with ultralow transition temperatures it is important to
eliminate from the specimen even trace quantities of foreign paramagnetic
elements, because they can lower the transition temperature severely. One
part of Fe in 10* will destroy the superconductivity of Mo, which when pure
has T, = 0.92 X; and 1 at. percent of gadolinium lowers the transition temper-
ature of lanthanum from 5.6 K to 0.6 K. Nonmagnetic impurities have no very
marked effect on the transition temperature. The transition temperatures of
a number of interesting superconducting compounds are listed in Table 2.
Several organic compounds show superconductivity at fairly low temperatures.

1]. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 106, 162 (1957); 108, 1175 (1957).
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Table 2 Superconductivity of selected compounds

Compound T,inK Compound T,inK
Nb;Sn 18.05 ViGa 16.5
Nb,Ge 23.2 V;Si 17.1
Nb,Al 17.5 YBa,Cu;04 6 90.0
NbN 16.0 Rb,CsCy 31.3
Cao 19.2 MgB, 39.0
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Figure 3 Experimental threshold In\ Sn
curves of the ecritical field H(T)
versus temperature for scveral su- Tl\\
perconductors. A specimen is super- 0 N N
conducting bclow the curve and 0 2 4 6 8
normal above the curve. Temperature, in K

Destruction of Superconductivity by Magnetic Fields

A sufficiently strong magnetic field will destroy superconductivity. The
threshold or critical value of the applied magnetic field for the destruction of
superconductivity is denoted by H (T) and is a function of the temperaturc. At
the critical temperature the critical field is zero: H(T,) = 0. The variation of
the critical field with temperature for several superconducting elements is
shown in Fig. 3.

The threshold curves separate the superconducting state in the lower left
of the figure from the normal state in the upper right. Note: We should denote
the critical value of the applied magnetic field as B,,, but this is not common
practice among workers in superconductivity. In the CGS system we shall al-
ways understand that H, = B,,,, and in the SI we have H, = B,./uo. The symbol
B, denotes the applied magnetic field.

Meissner Effect

Meissner and Ochsenfeld (1933) found that if a superconductor is cooled
in a magnetic field to below the transition temperature, then at the transition
the lines of induction B are pushed out (Fig. 2). The Meissner effect shows
that a bulk superconductor behaves as if B = 0 inside the specimen.



10 Superconductivity

We obtain a particularly useful form of this result it we limit ourselves to
long thin specimens with long axes parallel to B,: now the demagnetizing field
contribution (see Chapter 16) to B will be ncgligible, whence:”

(CGS)  B=B,+4mM=0; o M=-1, (1)
_ -0 . M__1_ .
(SI) B=B,+uM=0 ; or B ity €

The result B = 0 cannot be derived from the characterization of a super-
conductor as a medium of zero resistivity. From Ohm’s law, E = pj, we see that
if the resistivity p goes to zero while j is held finite, then E must be zero. By a
Maxwell equation dB/dt is proportional to curl E, so that zero resistivity im-
plies dB/dt = 0, but not B = 0. This argument is not entirely transparent, but
the result predicts that the flux through the metal cannot change on cooling
through the transition. The Meissner effect suggests that perfeet diamagnet-
ism is an cssential property of the superconducting state.

We expect another difference between a superconductor and a perfect
conductor, defined as a conductor in which the electrons have an infinite mean
free path. When the problem is solved in detail, it turns out that a perfect
conductor when placed in a magnetic field cannot produce a permanent eddy
current screen: the field will penetrate about 1 ¢m in an hour.®

The magnetization curve expected for a superconductor under the condi-
tions of the Meissner-Ochsenfeld experiment is sketched in Fig. 4a. This ap-
plies quantitatively to a specimen in the form of a long solid cylinder placed in
a longitudinal magnetic field. Pure specimens of many materials exhibit this
behavior; they are called type I superconductors or, formerly, soft super-
conductors. The values of H, are always too low for type I superconductors to
have application in coils for supcrconducting magnets.

Other materials exhibit a magnetization curve of the form of Fig. 4b and
are known as type II superconductors. They tend to be alloys (as in Fig. 5a)
or transition metals with high values of the electrical resistivity in the normal state:
that is, the electronic mean free path in the normal state is short. We shall see later
why the mean free path is involved in the “magnetization” of superconductors.

Type 11 superconductors have supercondncting electrical properties up to
a field denoted by H,,. Between the lower critical field H,; and the upper criti-
cal field H,, the flux density B # 0 and the Meissner effect is said to be incom-
plete. The value of H, may be 100 times or more higher (Fig. 5b) than

2Dialma\gnclism, the magnetization M, and the magnetic susceptibility are defined in
Chapter 14. The magnitude of the apparent diamagnetic susceptibility of bulk superconductors is
very much larger than in typical diamagnetic substances. In (1), M is the magnetization equivalent
to the superconducting currents in the specimen.

°A. B. Pippard, Dynamics of conduction electrons, Gordon and Breach, 1965.
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Figure 4 (a) Magnetization versus applied magnetic field for a bulk superconductor exhibiting a
complete Meissner effect (perfect diamagnetism). A superconductor with this behavior is called a
type I superconductor. Above the critical field H, the specimen is a normal condnctor and the mag-
netization is too small to be seen on this scale. Note that minus 47M is plotted on the vertical scale:
the negative value of M corresponds to diamagnctism. (b) Supcrconducting magnetization curve of
a type II superconductor. The flux starts to penetrate the specimen at a field H,, lower than the
thermodynamic critical field H,. The specimen is in a vortex state between H,, and H,,, and it has
superconducting electrical propertics up to H,. Above H,s the specimen is a normal conductor in
every respect, except for possible surface effects. For given H, the area under the magnetization
curve is the same for a type I superconductor as for a type 1. (CCS units in all parts of this figure.)

the value of the critical field H, calculated from the thermodynamics of the
transition. In the region becaween H,; and H,, the superconductor is threaded
by flux lines and is said to be in the vortex state. A field H,, of 410 kG (41 tes-
las) has been attained in an alloy of Nb, Al and Ge at the boiling point of he-
lium, and 540 kG (54 tcslas) has been reported for PbMaogSs.

Commercial solenoids wound with a hard superconductor produce high
steady fields over 100 kG. A “hard superconductor” is a type II superconduc-
tor with a large magnetic hysteresis, usually induced by mechanical treatment.
Such materials have an important medical application in magnetic resonance
imaging (MRI).

Heat Capacity

In all superconductors the entropy decreases markedly on cooling below
the critical temperature T,. Measurements for aluminum are plotted in Fig. 6.
The decrease in entropy between the normal state and the superconducting
state tells us that the superconducting state is more ordered than the normal
state, for the entropy is a measure of the disorder of a system. Some or all of the
electrons thermally excited in the normal state are ordered in the supercon-
ducting state. The change in entropy is small, in aluminum of the order of 107*
kg per atom. The small entropy change must mean that only a small fraction (of
the order of 107*) of the conduction electrons participate in the transition to
the ordered superconducting state. The free energies of normal and supercon-
ducting states are compared in Fig. 7.
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Figure 6 Eutropy S of aluminum in the normal and superconducting states as a function of the
temperature. The entropy is lower in the superconducting state because the clectrons are more vr-
dered here than in the normal statc. At any temperature below the critical temperature T, the speci-
men can be put in the normal state hy application of a magnetic field stronger than the critical field.

The heat capacity of gallium is plotted in Fig. 8: (a) compares the normal
and superconducting states; (b) shows that the electronic contribution to the
heat capacity in the superconducting state is an exponential form with an argu-
ment proportional to —1/T, suggestive of excitation of electrons across an en-
ergy gap. An energy gap (Fig. 9) is a characteristic, but not universal, feature of
the supcrconducting state. The gap is accounted for by the Bardeen-
Cooper-Schrieffer (BCS) thcory of superconductivity (see Appendix H).

Energy Gap

The energy gap of superconductors is of entirely different origin and na-
ture than the energy gap of insulators. In an insulator the energy gap is caused
by the electron-lattice interaction, Chapter 7. This interaction ties the electrons
to the lattice. In a superconductor the important interaction is the electron-
electron interaction which orders the electrons in k space with respect to the
Fermi gas of electrons.

The argument of the exponential factor in the clectronic heat capacity of a
superconductor is found to be —E,/2kyT and not —E/ksT. This has been
learnt from comparison with optical and electron tunneling determinations of
the gap E,. Values of the gap in several superconductors are given in Table 3.

The transition in zero magnetic field from the superconducting state to
the normal state is observed to be a second-order phase transition. At a
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ing state is plotted on a log scale versus T./7% the exponential dependence on 1/T is evident. Here
v = 0.60 mJ] mol ! deg ™2 (After N. E. Phillips.)
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Normal Superconductor

(@) (h)
Figure 9 (a) Conduction band in the normal state: (b) energy gap at the Fermi level in the super-
conducting state. Electrons in excited states above the gap hehave as normal electrons in rf fields:
they cause resistance; at de they are shorted out by the superconducting electrons. The gap E, is
exaggerated in the figure: typically £, ~ 107" ¢,

Table 3 Energy gaps in superconductors, at T = 0 al Si

second-order transition there is no latent heat, but there is a discontinuity in
the heat capacity, evident in Fig. 8a. Further, the energy gap decreases contin-
uously to zero as the temperature is increased to the transition temperature T..,
as in Fig. 10. A first-order transition would be characterized by a latent heat
and by a discontinuity in the energy gap.

Microwave and Infrared Properties

The existence of an energy gap means that photons of energy less than the
gap energy are not absorbed. Nearly all the photons incident are reflected as
for any metal because of the impedance mismatch at the boundary between
vacuum and metal, but for a very thin (~20 A) film more photons are transmit-
ted in the superconducting state than in the normal state.
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For photon energies less than the encrgy gap, the resistivity of a supercon-
ductor vanishes at absolute zero. At T < T, the resistance in the superconduct-
ing state has a sharp threshold at the gap energy. Photons of lower energy see a
resistanceless surface. Photons of higher energy than the energy gap see a re-
sistance that approaches that of the normal state because such photons cause
transitions to unoccupied normal energy levels above the gap.

As the temperature is increased not only does the gap decrease in energy,
but the resistivity for photons with energy below the gap energy no longer van-
ishes, except at zero frequency. At zero frequency the superconducting elec-
trons short-circuit any normal electrons that have been thermally excited
above the gap. At finite frequencies the inertia of the superconducting elec-
trons prevents them from completely screening the electric field, so that ther-
mally excited normal electrons now can absorb energy (Problem 3).

Isotope Effect

It has been observed that the critical temperature of superconductors
varies with isotopic mass. In mercury T, varies from 4.185 K to 4.146 K as the
average atomic mass M varies {rom 199.5 to 203.4 atomic mass units. The tran-
sition temperature changes smoothly when we mix different isotopes of the
same element. The experimental results within each series of isotopes may be
fitted by a relation of the form

M®T, = constant . (2)

Observed values of « are given in Table 4.
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Table 4 Tsotope effect in superconductors

Experimental values of a in M*T, = constant, where M is the isotopic mass.

Substance a Substance o

Zn 0.43 = 0.05 Ru 0.00 £ 0.05
Cd 0.32 £0.07 Os 0.15 £ 0.05
Sn 0.47 = 0.02 Mo 0.33

Hg 0.50 = 0.03 Nb;Sn 0.08 * 0.02
Ph 0.49 = 0.02 Zr 0.00 = 0.05

From the dependence of T, on the isotopic mass we learn that lattice
vibrations and hence electron-lattice interactions arc deeply involved in super-
conductivity. This was a fundamental discovery: there is no other reason for
the superconducting transition temperature to depend on the number of neu-
trons in the nucleus.

The original BCS model gave the result T, o 85, % M~ so thata =3
in (2), but the inclusion of coulomb interactions between the electrons
changes the relation. Nothing is sacred about @ = 3. The absence of an isotope
effect in Ru and Zr has been accounted for in terms of the electron band struc-

ture of these metals.

THEORETICAL SURVEY

A theoretical understanding of the phenomena associated with supercon-
ductivity has been reached in several ways. Certain results follow directly from
thermodynamics. Many important results can be described by phenomenolog-
ical equations: the London eqnations and the Landau-Ginzburg equations
(Appendix 1). A successful quantum theory of superconductivity was given by
Bardeen, Cooper, and Schrieffer, and has provided the basis for subsequent
work. Josephson and Anderson discovered the importance of the phase of the
superconducting wavefunction.

Thermodynamics of the Superconducting Transition

The transition between the normal and superconducting states is thermo-
dynamically reversible, just as the transition between liquid and vapor phases
of a substance is reversible. Thus we may apply thermodynamics to the transi-
tion, and we thereby obtain an expression for the entropy difference between
normal and superconducting states in terms of the critical field curve H, ver-
sus T. This is analogous to the vapor pressure equation for the liquid-gas
coexistence curve (TP, Chapter 10).
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We treat a type I superconductor with a complete Meissner effect. so that
B = 0 inside the superconductor. We shall see that the critical field H, is a quan-
titative measure of the free energy difference between the superconducting and
normal states at constant temperature. The symbol H, will always refer to a bulk
specimen, never to a thin film. For type II superconductors, H, is understood to
be the thermodynamic critical field related to the stabilization free energy.

The stabilization free energy of the superconducting state with respect to
the normal state can be determined by calorimetric or magnetic measure-
ments. In the calorimetric method the heat capacity is measured as a function
of temperature for the superconductor and for the normal conductor, which
means the superconductor in a magnetic field larger than H,. From the differ-
ence of the heat capacities we can compute the free energy difference, which
is the stabilization free energy of the superconducting state.

In the magnetic method the stabilization free energy is found from the
value of the applied magnetic field that will destroy the superconducting
state, at constant temperature. The argument follows. Consider the work done
(Fig. 11) on a superconductor when it is brought reversibly at constant tem-
perature from a position at infinity (where the applied field is zero) to a posi-
tion r in the field of a permanent magnet:

B,
W=—f M-dB, , (3)
0

— M
> Superconductor
B

a

§
_//,//h

_— Superconductor phase

B,=H, "~Normal phase
\ (coexisting in

equilibrium)

2z

®)

Figure 11 (a) A superconductor in which the Meissner effect is complete has B = 0, as if the
magnetization were M = —B,/4, in CGS units. (b) When the applied field reaches the value B,
the normal state can coexist in equilibrium with the superconducting state. In coexistence the free
energy densities are equal: Fy(T, B,,) = Fo(T, B,,).
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per unit volume of specimen. This work appears in the energy of the magnetic
field. The thermodynamic identity for the process is

dF =—-M-dB, , (4)

as in TP, Chapter 8.
For a superconductor with M related to B, by (1) we have

(CGS) (5)
(SD)
The increase in the free energy density of the superconductor is

(CGS) Fs(B,) — F5(0) = B8 ; (6)

(ST)

on being brought from a position where the applied field is zero to a position
where the applied field is B,.

Now consider a normal nonmagnetic metal. If we neglect the small
susceptibility* of a metal in the normal state, then M = 0 and the energy of the
normal metal is independent of field. At the critical field we have

Fy(Bg) = Fy(0) . (7)
The results (6) and (7) are all we need to determine the stabilization
energy of the superconducting state at absolute zero. At the critical value B,

of the applied magnetic field the energies are equal in the normal and super-
conducting states:

(CGS) F\(B,,) = Fs(B,,) = F5(0) + B /8 , (8)

(81)

In ST units H, = B,,/pg, whereas in CGS units H, = B,,.
The specimen is stable in either state when the applied field is equal to
the critical field. Now by (7) it follows that

(CGS) AF = Fy(0) — Fy(0) = B% /87 , (9)

“This is an adequate assumption for type I superconductors. In type II superconductors in
high fields the change in spin paramagnetism of the conduction electrons lowers the energy of the
normal phase significantly. In some, but not all, type II superconductors the upper critical field is
limited by this effect. Clogston has suggested that H ,(max) = 18,400 T,, where H , is in gauss and
T, in K.
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Figure 12 The free energy density Fy of a nonmag-
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applied magnetic field increases F, by BY8#, in CGS
1mits, so that Fg(T, B,) = F«(T, 0) + BY8x. If B, is larger
than the critical field B, the free energy density is
lower in the normal state than in the superconducting
B state, and now the normal state is the stable state. The
0 origin of the vertical scale in the drawing is at F¢(T, 0).
The figurc cqually applies to Ugand Uy at T = 0.

Applied magnetic field B, —»

where AF is the stabilization free energy density of the superconducting state.
For aluminum, B,, at absolute zcro is 105 gauss, so that at absolute zero
AF = (105)%/87 = 439 erg cm %, in excellent agreement with the result of
thermal measurcments, 430 erg cm ™.

At a finite temperature the normal and superconducting phases
are in equilibrium when the magnetic field is such that their free encrgies
F=1U—TS are equal. The free energies of the two phascs are sketched
in Fig. 12 as a function of the magnetic field. Experimental curves of the
free energies of the two phases for aluminum are shown in Fig. 7. Because
the slopes dF/dT are equal at the transition temperature, there is no latent
heat at T.,.

London Equation

We saw that the Meissner effect implies a magnetic susceptibility X = —1/47
in CGS in the superconducting state or, in SI, X = —1. Can we maodify a consti-
tutive equation of electrodynamics (such as Ohm’s law) in some way to obtain
the Meissner effect? We do not want to modify the Maxwell equations them-
selves. Electrical conduction in the normal state of a metal is described by
Ohm’s law j = oE. We need to modify this drastically to describe conduction
and the Meissner effect in the superconducting state. Let us make a postulate
and see what happens.

We postulate that in the superconducting state the current density is di-
rectly proportional to the vector potential A of the local magnetic field, where
B = curl A. The gauge of A will be specified. In CGS units we write the
constant of proportionality as —c/4mA} for reasons that will become clear.



274

Here c is the speed of light and A, is a constant with the dimensions of length.
In SI units we write —1/uA;. Thus

(CGS) j= -

czA;
4mA;

This is the London equation. We express it another way by taking the curl of
both sides to obtain

CGS lji=—-—_B ;
( ) curlj 4mA2

The London equation (10) is understood to be written with the vector po-
tential in the London gauge in which div A = 0, and A, = 0 on any external
surface through which no external current is fed. The subscript n denotes the
component normal to the surface. Thus div j = 0 and j, = 0, the actual physi-
cal boundary conditions. The form (10) applies to a simply connected super-
conductor; additional terms may be present in a ring or cylinder, but (11)
holds true independent of geometry.

First we show that the London equation leads to the Meissner effect. By a
Maxwell equation we know that

(CGS) curl B=4T;

under static conditions. We take the curl of both sides to obtain

(CGS) curl curl B =—V2B = 47 eyl j

(8T)

which may be combined with the London equation (11) to give for a super-
conductor

VB = B/A} . (13)

This equation is seen to account for the Meissner effect because it does
not allow a solution uniform in space, so that a uniform magnetic field cannot
exist in a superconductor. That is, B(r) = B, = constant is not a solution of
(13) unless the constant field By is identically zero. The result follows because
V2B, is always zero, but By/A7 is not zero unless By is zero. Note further that
(12) ensures that j = 0 in a region where B = 0.

In the pure superconducting state the only field allowed is exponentially
damped as we go in from an external surface. Let a semi-infinite superconductor
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Figure 13 Penetration of an applied magnetic
field into a semi-infinite superconductor. The
penetration depth A is defined as the distance in
which the field decreases by the factor ¢*. Typi-
cally, A = 500 Aina pure superconductor.

occupy the space on the positive side of the x axis, as in Fig. 13. If B(0) is the
field at the plane boundary, then the field inside is

B(x) = B(0) exp(—w/A,) (14)

for this is a solution of (13). In this example the magnetic field is assumed to
be parallel to the boundary. Thus we see A}, measures the depth of penetration
of the magnetic field; it is known as the London penetration depth. Actual
penetration depths are not described precisely by A; alone, for the London
equation is now known to be somewhat oversimplified. It is shown by compari-
son of (22) with (11) that

(CGS) AL = (mc*dmng?)? | (14a)

for particles of charge ¢ and mass m in concentration n. Values are given in
Table 5.

An applied magnetic field B, will penetrate a thin film fairly uniformly if
the thickness is much less than A, ; thus in a thin film the Meissner effect is not
complete. In a thin film the induced field is much less than B,, and there is
little effect of B, on the energy density of the superconducting state, so that
(6) does not apply. It follows that the critical field H, of thin films in parallel
magnetic fields will be very high.

Table 5 Calculated intrinsic coherence length and
London penetration depth, at absolute zero

Intrinsic Pippard London

coherence penetration

length &, depth A,
Metal in 107% cm in 10" %em A/
Sn 23. 3.4 0.16
Al 160. 1.6 0.010
Pb 8.3 3.7 0.45
Ccd 76. 11.0 0.14
Nb 3.8 3.9 1.02

After R. Meservey and B. B. Schwartz.
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Coherence Length

The London penetration depth A; is a fundamental length that character-
izes a superconductor. An independent length is the coherence length ¢. The
coherence length is a measure of the distance within which the superconduct-
ing electron concentration cannot change drastically in a spatially-varying
magnetic field.

The London equation is a local equation: it relates the current density at a
point r to the vector potential at the same point. So long as j(r) is given as a
constant time A(r), the current is required to follow exactly any variation in
the vector potential. But the coherence length £ is a measure of the range over
which we should average A to obtain j. It is also a mecasure of the minimum spa-
tial extent of a transition layer between normal and superconductor. The coher-
ence length is best introduced into the theory through the Landau-Ginzburg
equations, Appendix 1. Now we give a plausibility argument for the energy re-
quired to modulate the superconducting electron concentration.

Any spatial variation in the state ol an electronic system requires extra
kinetic energy. A modulation of an cigenfunction increases the kinetic energy
because the modulation will increase the integral of d”¢/dx®. It is reasonable to
restrict the spatial variation of j(r) in such a way that the cxtra energy is less
than the stabilization energy of the superconducting state.

We compare the plane wave Y(x) = ¢ with the strongly modulated
wavefunction:

QD(x) =912 (ei(k+q)x + eikx) ) (153.)

The probability density associated with the plane wave is uniform in space:
dr¥g = e 7% ™ = 1, whereas @*¢ is modulated with the wavevector g:

‘P*‘P — %(6~i(k+q)x + e—ikx)(ei(k+q)x +eik:)

=52+ +e ) =1+ cosgx . (15b)

The kinetic energy of the wave (x) is € = #%%2m; the kinctic energy of
the modulated density distribution is higher, for

N S Y TN RTIN l
fdxqo ( 2mdx2)¢2(2m)[(k+q) k= 2mk +2mkq ’

where we neglect ¢° for g < k.
The increase of energy requircd to modulate is #%kq/2m. If this increase
exceeds the energy gap E,, superconductivity will be destroyed. The critical

value g, of the modulation wavevector is given by
2

277‘1 quO = Eg . (16&)
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We define an intrinsic coherence length &, related to the critical modu-
lation by &, = 1/¢,. We have

go = ﬁzk}:/szg = ﬁl}F/QAEg 5 (16b)

where v is the electron velocity at the Fermi surface. On the BCS theory a
similar result is found:

é:O = 2hUF/7TEg . (17)

Calculated values of &, from (17) are given in Table 5. The intrinsic coherence
length £, is characteristic of a pure superconductor.

In impure materials and in alloys the coherence length & is shorter than &,.
This may be understood qualitatively: in impure material the electron eigen-
functions already have wiggles in them: we can construct a given localized
variation of current density with less energy from wavefunctions with wiggles
than from smooth wavefunctions.

The cohcrence length first appeared in the Landau-Ginzburg equations;
these equations also follow from the BCS theory. They describe the structure
of the transition layer between normal and superconducting phases in contact.
The coherence length and the actual penetration depth A depend on the mean
free path € of the electrons measured in the normal state; the relationships are
indicated in Fig. 14. When the superconductor is very impure, with a very
small £, then £ = (£,0)Y2 and A = A (£,/€)2, so that A/& =~ A, /€. This is the
“dirty superconductor” limit. The ratio A/£ is denoted by «.

BCS Theory of Superconductivity

The basis of a quantum theory of superconductivity was laid by the classic
1957 papers of Bardeen, Cooper, and Schrieffer. There is a “BCS theory of
superconductivity” with a very wide range of applicability, from He® atoms in
their condensed phase, to type I and type II metallic superconductors, and to
high-temperature superconductors based on planes of cuprate ions. Further,
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Figure 14 Pcnctration depth A and the coherence
length £ as functions of the mean free path € of the
conduction electrons in the normal state. All
lengths are in units of £, the intrinsic coherence
length. The enrves are sketched for £ = 10A;. For
0 L ‘ L L short mean free paths the coherence length be-

0 1 2 comes shorter and the penetration depth becomes
£ longer. The increase in the ratio kA/£ favors type IT

%o superconductivity.
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there is a “BCS wavefunction” composed of particle pairs kT and —k!, which,
when treated hy the BCS theory, gives the familiar electronic superconductiv-
ity observed in metals and exhibits the encrgy gaps of Table 3. This pairing is
known as s-wave pairing. There are other forms of particle pairing possible
with the BCS theory, but we do not have to consider other than the BCS wave-
function here. In this chapter we treat the specific accomplishments of BCS
theory with a BCS wavefunction, which include:

1. An attractive interaction between electrons can lead to a ground state
separated from excited states by an energy gap. The critical field, the thermal
properties, and most of the electromagnetic properties are consequences of
the energy gap.

2. The clectron-lattice-electron interaction leads to an energy gap of the
observed magnitude. The indircct interaction proceeds when one electron in-
teracts with the lattice and deforms it: a second cleetron sees the deformed
lattice and adjusts itself to take advantage of the deformation to lower its en-
ergy. Thus the second electron interacts with the first electron via the lattice
deformation.

3. The penetration depth and the coherence length emerge as natural
consequences of the BCS theory. The London equation is obtained for mag-
netic fields that vary slowly in space. Thus the central phenomenon in super-
conductivity, the Meissner effect, is obtained in a natural way.

4. The criterion for the transition temperature of an clement or alloy in-
volves the electron density of orbitals D(e,) of one spin at the Fermi level and
the electron-lattice interaction U, which can be estimated from the electrical
resistivity because the resistivity at room temperature is a measure of the
electron-phonon interaction. For UD(ex) <€ 1 the BCS theory predicts

T. = 1.146 exp[— 1/UD(eg)] , (18)

where 8 is the Debye temperature and U is an attractive interaction. The re-
sult for T, is satisfied at least qualitatively by the experimental data. There is
an interesting apparent paradox: the higher the resistivity at room temperature
the higher is U, and thus the more likely it is that the metal will be a super-
conductor when cooled.

5. Magnetic flux through a superconducting ring is quantized and the ef-
fective unit of charge is 2¢ rather than e. The BCS ground state involves pairs
of electrons; thus flux quantization in terms of the pair charge 2e is a conse-
quence of the theory.

BCS Ground State

The filled Fermi sea is the ground state of a Fermi gas of noninteract-
ing electrons. This state allows arbitrarily small excitations—we can form an
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P(e) !

Figure 15 (a) Probability P that an or-
bital of kinetic energy e is occupied in the
ground state of the noninteracting Fermi
gas; (b) the BCS ground state differs
from the Fermi state in a region of width
of the order of the energy gap E, Both
curves are for absolute zero.

excited state by taking an electron from the Fermi surface and raising it just
above the Fermi surface. The BCS theory shows that with an appropriate at-
tractive interaction between electrons the new ground state is superconduct-
ing and is separated by a finite energy E, from its lowest excited state.

The formation of the BCS ground state is suggested by Fig. 15. The BCS
state in (b) contains admixtures of one-electron orbitals from above the Fermi
energy ez At first sight the BCS state appears to have a higher energy than the
Fermi state: the comparison of (b) with (a) shows that the kinetic energy of the
BCS state is higher than that of the Fermi state. But the attractive potential
energy of the BCS state, although not represented in the figure, acts to lower
the total energy of the BCS state with respect to the Fermi state.

When the BCS ground state of a many-electron system is described in
terms of the occupancy of one-particle orbitals, those near € are filled some-
what like a Fermi-Dirac distribution for some finite temperature.

The central feature of the BCS state is that the one-particle orbitals are
occupied in pairs: if an orbital with wavevector k and spin up is occupied, then
the orbital with wavevector —k and spin down is also occupied. If kT is vacant,
then —k{ is also vacant. The pairs are called Cooper pairs, treated in
Appendix H. They have spin zero and have many attributes of bosons.

Flux Quantization in a Superconducting Ring

We prove that the total magnetic flux that passes through a superconduct-
ing ring may assume only quantized values, integral multiples of the flux quan-
tum 27rfic/q, where by experiment g = 2e, the charge of an electron pair. Flux
quantization is a beautiful example of a long-range quantum effect in which
the coherence of the superconducting state extends over a ring or solenoid.

Let us first consider the electromagnetic field as an example of a similar
boson field. The electric field intensity E(r) acts qualitatively as a probability
field amplitude. When the total number of photons is large, the energy density
may be written as

E*(r)E(x)/4m = n(r)hw ,
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where n(r) is the number density of photons of frequency w. Then we may
write the electric field in a semiclassical approximation as

E(l‘) = (47Tﬁw)l/2 n(r)l/2 ew(r) E*(r) = (471"1(1))1/2 n“,)l/ze—io(r) ,

where 0(r) is the phase of the ficld. A similar probability amplitude describes
Cooper pairs.

The arguments that follow apply to a boson gas with a large number of
bosons in the same orbital. We then can treat the boson probability amplitude
as a classical quantity, just as the electromagnetic field is used for photons. Both
amplitude and phase are then meaningful and observable. The arguments do
not apply to a metal in the normal state because an electron in the normal state
acts as a single unpaired formion that cannot be treated classically.

We first show that a charged boson gas obeys the London equation.
Let (r) be the particle probability amplitude. We suppose that the pair
concentration n = Y*iy = constant. At absolute zero n is one-half of the con-
centration of electrons in the conduction band, for n refers to pairs. Then we
may write

W= nl2 et gr=nl2e 00 (19)

The phase 0(r) is important for what follows. In SI units, set ¢ = 1 in the equa-
tions that follow.
The velocity of a particle is, from the Hamilton cquations of mechanics,

(ccs) ve(p-ta) =k (av-2a)

The particle flux is given by

b = %(hve - %A) , (20)
so that the electric current density is
j=qurvy = ’;Z(ﬁvo - gA) . (21)
We may take the curl of both sides to obtain the London equation:
curlj = —?Tq:B , (22)

with use of the fact that the curl of the gradicent of a scalar is identically zero.
The constant that multiplies B agrees with (14a). We rccall that the Meissner
effect is a consequence of the London equation, which we have here
derived.

Quantization of the magnetic flux through a ring is a dramatic conse-
quence of Eq. (21). Let us take a closed path C through the interior of the
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Flux lines

Figure 16 Path of integration C through the interior of a
superconducting ring. The flux through the ring is the sum
of the flux @, from external sources and the flux ®,, from
the superconducting currents which flow in the surface of
the ring; ® — @, + ®,.. The flux P is quantized. There is
normally no quantization condition on the flux from exter-
nal sources, so that ®,. must adjust itself appropriately in
order that @ assume a quantized value.

superconducting material, well away from the surface (Fig. 16). The Meissner
effect tells us that B and j are zero in the interior. Now (21) is zero if

ficVo = gA . (23)
We form
§ V@ ‘ dl = 92 - 01
c

for the change of phase on going once around the ring.
The probability amplitude ¢ is measurable in the classical approximation,
so that ¢ must be single-valued and

92 - 61 = 2ms 5 (24)

where s is an integer. By the Stokes theorem,
§A-dl=f{cur1A)-da=JB'da=®, (25)
c c c

where da is an element of area on a surface bounded by the curve C, and ® is
the magnetic flux through C. From (23), (24), and (25) we have 27hcs = ¢®, or
b = 2mhe/q)s . (26)

Thus the flux through the ring is quantized in integral multiples of 27fic/g.
By experiment g = —2e as appropriate for electron pairs, so that the quan-
tum of flux in a superconductor is

(CGS) D, = 277hic/2e = 2.0678 X 1077 gauss cm? ;

(SD)

(27)

This flux quantum is called a fluxoid or fluxon.
The flux through the ring is the sum of the flux ®,,, from external sources
and the flux ®, from the persistent superconducting currents which flow in
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the surface of the ring: ® = &,,, + ®_. The flux & is quantized. There is nor-
mally no quantization condition on the flux from external sources, so that ®,,
must adjust itself appropriately in order that ® assume a quantized value.

Duration of Persistent Currenis

Consider a persistent current that flows in a ring of a type I superconduc-
tor of wire of length I and cross-sectional area A. The persistent current main-
tains a flux through the ring of some integral number of fluxoids (27). A fluxoid
cannot leak out of the ring and thereby reduce the persistent current unless by
a thermal fluctuation a minimum volume of the superconducting ring is mo-
mentarily in the normal state.

The probability per unit time that a fluxoid will leak out is the product

P = (attempt frequency)(activation barrier factor) . (28)

The activation barrier factor is exp(—AF/kgT), where the free energy of the
barrier is

AF =~ (minimum volume)(excess free energy density of normal state) .

The minimum volume of the ring that must turn normal to allow a fluxoid to
escape is of the order of R£?, where ¢ is the coherence length of the super-
conductor and R the wire thickness. The excess free energy density of the nor-
mal state is H2/87r, whence the barrier free energy is

AF ~ REHY87r . (29)

Let the wire thickness be 1074 em, the coherence length = 107* ¢m, and
H, = 10° G; then AF =~ 107" erg. As we approach the transition temperature
from below, AF will decrease toward zero, but the value given is a fair estimate
between absolute zero and 0.8 T,. Thus the activation barrier factor is

exp(—AF/ksT) = exp(—10%) ~ 10~ #3100

The characteristic {requency with which the minimum volume can attempt
to change its state must be of the order of E,/A. If E, = 107" erg, the attempt
frequency is ~107'%/10"%" =~ 102 57!, The leakage probability (28) becomes

P= 101210—4.34><107S— 1= 1043 ><1075~1 )

The reciprocal of this is a measure of the time required for a fluxoid to leak
out, T = I/P = 10*3%1'g,

The age of the universe is only 10*8 s, so that a fluxoid will not leak out in
the age of the universe, under our assumed conditions. Accordingly, the cur-
rent is maintained.

There are two circumstances in which the activation energy is much lower
and a fluxoid can be observed to lcak out of a ring—either very close to the
critical temperature, where H, is very small, or when the material of the ring is
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a type II superconductor and already has fluxoids embedded in it. These spe-
cial situations are discussed in the literature under the subject of fluctuations
in superconductors.

Type II Superconductors

There is no difference in the mechanism of superconductivity in type I
and type II superconductors. Both types have similar thermal properties at the
superconductor-normal transition in zero magnetic field. But the Meissner
effect is entirely different (Fig. 5).

A good type 1 superconductor cxcludes a magnetic field until super-
conductivity is destroyed suddenly, and then the field penetrates completely. A
good type II superconductor excludes the field completely up to a field H,,.
Above H,, the field is partially excluded, but the specimen remains electrically
superconducting. At a much higher field, H,,, the flux penetrates completely
and superconductivity vanishes. (An outer surface layer of the spccimen may
remain superconducting up to a still higher field H,;.)

An important difference in a type I and a type II superconductor is in the
mean free path of the conduction clectrons in the normal state. If the coher-
ence length £ is longer than the penetration depth A, the superconductor will
be typc I. Most pure metals are type I, with A/£ < 1 (see Table 5 on p. 275).

But, when the mean free path is short, the coherence length is short and
the penetration depth is great (Fig. 14). This is the situation when A/¢ > 1,
and the superconductor will be type II.

We can change some metals from type I to type II by a modest addition
of an alloying element. In Figure 5 the addition of 2 wt. percent of indium
changes lead from type I to type II, although the transition temperature is
scarcely changed at all. Nothing fundamental has been done to the electronic
structure of lead by this amount of alloying, but the magnetic behavior as a
superconductor has changed drastically.

The theory of type II superconductors was developed by Ginzburg,
Landau, Abrikosov, and Gorkov. Later Kunzler and co-workers observed that
Nb;Sn wires can carry large supercurrents in fields approaching 100 kG; this
led to the commercial development of strong-field superconducting magnets.

Consider the interface between a region in the superconducting state and
a region in the normal state. The interface has a surfuce energy that may be
positive or negative and that decreases as the applied magnetic field is in-
creased. A superconductor is type 1 if the surface energy is always positive as
the magnetic field is increased, and type II if the surface cnergy becomes
negative as the magnetic field is increased. The sign of the surface energy has
no importance [or the transition temperature.

The frec energy of a bulk superconductor is increased when the magnetic
field is expelled. Ilowever, a parallel field can penetrate a very thin film nearly
uniformly (Fig. 17), only a part of the flux is expelled, and the energy of the
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Figure 17 (a) Magnetic field penetration into a thin film of thickness equal to the penetration
depth A. The arrows indicate the intensity of the magnetic field. (b) Magnetic field penetration in
a homogeneous bulk structure in the mixed or vortex state, with alternate layers in normal and su-
perconducting states. The superconducting layers are thin in comparison with A. The laminar
structure is shown for convenience; the actual structure consists of rods of the normal state sur-
rounded by the superconducting state. (The N regions in the vortex state are not exactly normal,
but are described by low values of the stabilization energy density.)

superconducting film will increase only slowly as the external magnetic field is
increased. This causes a large increase in the field intensity required for the
destruction of superconductivity. The film has the usual energy gap and will be
resistanceless. A thin film is not a type IT superconductor, but the film results
show that under suitable conditions superconductivity can exist in high mag-
netic fields.

Vortex State. The results for thin films suggest the question: Are there sta-
ble configurations of a superconductor in a magnetic field with regions (in the
form of thin rods or plates) in the normal state, each normal region sur-
rounded by a superconducting region? In such a mixed state, called the vortex
state, the external magnetic field will penetrate the thin normal regions uni-
formly, and the field will also penetrate somewhat into the surrounding super-
conducting material, as in Fig. 18.

The term vortex state describes the circulation of superconducting
currents in vortices throughout the bulk specimen, as in Fig. 19. There is no
chemical or crystallographic difference between the normal and the supercon-
ducting regions in the vortex state. The vortex state is stable when the penetra-
tion of the applied field into the superconducting material causes the surface
energy to become negative. A type II superconductor is characterized by a
vortex state stable over a certain range of magnetic field strength; namely,
between H,, and H .

Estimation of H,, and H,,. What is the condition for the onset of the
vortex state as the applied magnetic field is increased? We estimate H,; from
the penetration depth A. The field in the normal core of the fluxoid will be I
when the applied field is H,,.
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Type I superconductor
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B”+Bb

Type 11 superconductor
<A

Figure 18 Variation of the magnetic field and en-
ergy gap parameter A(x) at the interface of super-
conducting and normal regions, for type I and
type II superconductors. The energy gap parameter
is a measure of the stabilization energy density of
the superconducting state.

The field will extend out from the normal core a distance A into the super-
conducting environment. The flux thus associated with a single core is mA® H,,,,
and this must be equal to the flux quantum ®, defined by (27). Thus

H, = ®ymr? . (30)

This is the field for nucleation of a single fluxoid.

At H,, the fluxoids are packed together as tightly as possible, consistent
with the preservation of the superconducting state. This means as densely as
the coherence length ¢ will allow. The external field penetrates the specimen
almost uniformly, with small ripples on the scale of the fluxoid lattice. Each
core is responsible for carrying a flux of the order of mé® H,,, which also is
quantized to @,,. Thus

H,, =~ ®y/mé” (31)

gives the upper critical field. The larger the ratio A/£, the larger is the ratio of
H,to H,.
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1000 A

Figure 19 Flux lattice in NbSe, at 1,000 gauss at 0.2K, as viewed with a scanning tunneling
microscope. The photo shows the density of states at the Fermi level, as in Figure 23. The vortex
cores have a high density of states and are shaded white; the superconducting regions are dark,
with no states at the Fermi level. The amplitude and spatial extent of these states is determined by
a potential well formed by A(x) as in Fig. 18 for a Type II superconductor. The potential well
confines the core state wavefunctions in the image here. The star shape is a finer feature, a result
special to NbSe, of the sixfold disturbance of the charge density at the Fermi surface. Photo cour-
tesy of H. F. Hess.

It remains to find a relation between these critical fields and the thermo-
dynamic critical field H, that measures the stabilization energy density of the
superconducting state, which is known by (9) to be H2/8. In a type 1I super-
conductor we can determine H, only indirectly by calorimetric measurement
of the stabilization energy. To estimate H,, in terms of H,, we consider the
stability of the vortex state at absolute zero in the impure limit £ < A; here
k > 1 and the coherence length is short in comparison with the penetration
depth.

We estimate in the vortex state the stabilization energy of a fluxoid core
viewed as a normal metal cylinder which carries an average magnetic field B,,.
The radius is of the order of the coherence length, the thickness of the bound-
ary between N and S phases. The energy of the normal core referred to the
energy of a pure superconductor is given by the product of the stabilization
energy times the area of the core:

(CGS) fooe = g HE X mE? (32)
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per unit length. But there is also a decrease in magnetic energy because of the
penetration of the applied field B, into the superconducting material around
the core:

(CGS) Frnog = 32 X A" (33)

For a single fluxoid we add these two contributions to obtain
(CGS) I = Feore + fonag =5 (HZ = BIA®) (34)

The core is stable if f < 0. The threshold field for a stable fluxoid is at f = 0,
or, with H,; written for B,

H /H,=¢&/A . (35)
The threshold field divides the region of positive surface energy from the re-

gion of negative surface energy.
We can combine {30) and (35) to obtain a relation for H,:

TEANH, = D, . (36)
We can combine (30), (31), and (35) to obtain
(H,H,)"=H, , (37a)
and
Hyo~WEOH,=«H, . (37b)

Single Particle Tunneling

Consider two metals separated by an insulator, as in Fig. 20. The insulator
normally acts as a barrier to the flow of conduction electrons from one metal
to the other. If the barrier is sufficiently thin (less than 10 or 20 A) there is a
significant probability that an electron which impinges on the barrier will pass
from one metal to the other: this is called tunneling. In many experiments the
insulating layer is simply a thin oxide layer formed on one of two evaporated
metal films, as in Fig. 21.

When both metals are normal conductors, the current-voltage relation of
the sandwich or tunneling junction is ohmic at low voltages, with the current
directly proportional to the applied voltage. Giaever (1960) discovered that if
one of the metals becomes superconducting the current-voltage characteristic
changes from the straight line of Fig. 22a to the curve shown in Fig. 22b.

Figure 20 Two metals, A and B, separated by a thin layer of an
insulator C.
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Figure 21 Preparation of an AVAl,0,/Sn sandwich. (a) Glass slide with indium contacts. (b) An
aluminum strip 1 mm wide and 1000 to 3000 A thick has been deposited across the contacts.
(¢) The aluminum strip has been oxidized to form an Al,O; layer 10 to 20 A in thickness. (d) A tin
film has been deposited across the aluminum film, forming an Al/Al,0,/Sn sandwich. The external
leads are connected to the indium contacts; two contacts are used for the current measurement
and two for the voltage measurement. (After Giaever and Megerle.)

= b=

£ £

3 3

O @]
Figure 22 (a) Linear current-voltage
relation for junction of normal metals
separated by oxide layer; (b) current- Ve

. . Voltage Voltage
voltage relation with one metal normal (@ b)
and the other metal superconducting. a (
Current

= Ae = Voltage
(a) b)

Figure 23 The density of orbitals and the current-voltage characteristic for a tunneling junction.
In (a) the energy is plotted on the vertical scale and the density of orbitals on the horizontal scale.

One metal is in the normal state and one in the superconducting state. (b) I versus V; the dashes
indicate the expected break at T = 0. (After Giaever and Megerle.)

Figure 23a contrasts the electron density of orbitals in the superconductor
with that in the normal metal. In the superconductor there is an energy gap
centered at the Fermi level. At absolute zero no current can flow until the
applied voltage is V = E,/2¢ = Ale.

The gap E, corresponds to the break-up of a pair of electrons in the
superconducting state, with the formation of two electrons, or an electron and
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a hole, in the normal state. The current starts when ¢V = A. At finite
temperatures there is a small current flow even at low voltages, because
of electrons in the superconductor that are thermally excited across the
energy gap.

Josephson Superconductor Tunneling

Under suitable conditions we observe remarkable effects associated with
the tunneling of superconducting electron pairs from a superconductor
through a layer of an insulator into another superconductor. Such a junction is
called a weak link. The effects of pair tunneling include:

Dc Josephson effect. A dc current flows across the junction in the ab-
sence of any clectric or magnetic field.

Ac Josephson effect. A dc voltage applied across the junction causes
rf current oscillations across the junction. This effect has been utilized in a
precision determination of the value of %/e. Further, an rf voltage applied with
the dc voltage can then cause a de current across the junction.

Macroscopic long-range quantum interference. A dc magnetic field
applied through a superconducting circuit containing two junctions causes the
maximum supercurrent to show interference effects as a function of magnetic
field intensity. This effect can be utilized in sensitive magnetometers.

Dc Josephson Effect. Our discussion of Josephson junction phenomena
follows the discussion of flux quantization. Let ¢, be the probability amplitude
of electron pairs on one side of a junction, and let ¢, be the amplitude on the
other side. For simplicity, let both superconductors be identical. For the pres-
ent we suppose that they are both at zero potential.

The time-dependent Schrédinger equation ifidy/ot = ¥y applied to the
two amplitudes gives

!!/1

——=hT, ; ih—= %

= ATy, . (38)

Here #iT represents the effect of the electron-pair coupling or transfer interac-
tion across the insulator; T has the dimensions of a rate or frequency. It is a
measure of the leakage of i into the region 2, and of ¢, into the region 1. If
the insulator is very thick, T is zero and there is no pair tunneling.

Let ¢y =n}2e'® and ¢, = n}? &' % Then

W\ am a 0,
8t1 ; 11/2 01 + l’lfl atl _lTlp2 N (39)
6'1’2 -1 g, W2 anz

ot énz [ + "!’Z at _le/}l . (40)
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We multiply (39) by n}®e ™% to obtain, with 8 = 6, — 0,,

16n, . 06, 19,58
2 W + 'ln/] (")_t - ll (nl n‘Z) € . (41)

We multiply (40) by n3® ¢ 7% to obtain

19ny, . 86 . 12 _—is
3 ot +m2W— iT(nyny)"e™ . (42)

Now equate the real and imaginary parts of (41) and similarly of (42):

% = 2T(n;n,)sin 8 ; 3;;2 —9T(n,n,)**sin & ; (43)
66—? ~T( )mcosf} ; aa—i% -T (g—l)m cos 8 . (44)
If ny = n, as for identical superconductors 1 and 2, we have from (44) that
e (45)
From (43) we sec that
m_ i “®

The current flow from (1) to (2) is proportional to dny/0t or, the same
thing, —dn, /3t. We therefore conclude from (43) that the current J of super-
conductor pairs across the junction depends on the phasc ditference 8 as

J=Josind = J,sin (6, — 6,) . (47)

where [, is proportional to the transfer interaction T. The current J, is the
maximum zero-voltage current that can be passed by the junction. With no
applicd voltage a dc current will flow across the junction (Fig. 24), with a value
between J, and —J, according to the valuc of the phase difference 8, — 6.
This is the dc Josephson effect.

Ac Josephson Effect. Let a dc voltage V be applied across the junction. We
can do this because the junction is an insulator. An electron pair experiences a
potential energy difference ¢V on passing across the junction, where ¢ = —2e.
We can say that a pair on one side is at potential energy —eV and a pair on the
other side is at eV. The equations of motion that replace (38) are

ihoo ot = kT — Vil 5 ik 0 /at = BTy + eVif, | (48)
We proceed as above to find in place of (41) the equation

an 08 } .
—a—l '711—65=ie"“1ﬁ —iT(nny)% e . (49)

l\.»l)—l
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Current

I Voltage

Figure 24 Current-voltage characteristic of a Josephson
junction. De currents flow under zero applied voltage up
to a critical current i, this is the dc Josephson effect. At
voltages above V, the junction has a finite resistance, but
the current has an oscillatory component of frequency
o = 22V/h: this is the ac Josephson cffect.

This equation breaks up into the real part
on, /ot = 2T(nyny) 2 sin 8 | (50)
exactly as without the voltage V, and the imaginary part
30, /0t = (eV/k) — T(ny/ny)) cos 8 , (51)

which differs from (44) by the term eV/.
Further, by extension of (42),

d 00 )
3 ing 22 = —i eV, hT — iT(uny) e (52)
whence
anz/at = _2T<n1 nz)]/Z sin & 5 (53)
80,/8t = —(eV/h) — T(ny/ny) 2 cos 8 . (54)

From (51) and (54) with n, = n,, we have
3(8, — 8,)/3t = 36/t = —26V/i . (55)

We see by integration of (55) that with a dc voltage across the junction the
relative phase of the probability amplitudes varies as

8(t) = 8(0) — (2eVt/h) . (56)

The superconducting current is given by (47) with (56) for the phase:

| = Josin [8(0) — (2eVi/h)] . (87)
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The current oscillates with frequency
o =2eVih . (58)

This is the ac Josephson effect. A dc voltage of 1 uV produces a frequency
of 483.6 MHz. The relation (58) says that a photon of energy fiw =2V is
emitted or absorbed when an electron pair crosses the barrier. By measuring

the voltage and the frequency it is possible to obtain a very precise value
of e/h.

Macroscopic Quantum Interference. We saw in (24) and (26) that the
phase difference 8, — 6, around a closed circuit which encompasses a total
magnetic flux @ is given by

02 - 01 = (26/ﬁ0)q) . (59)

The flux is the sum of that due to external fields and that due to currents in the
circuit itself.

We consider two Josephson junctions in parallel, as in Fig. 25. No voltage
is applied. Let the phase difference between points 1 and 2 taken on a path
through junction a be 8,. When taken on a path through junction b, the phase
difference is 8,. In the absence of a magnetic field these two phases must be
equal.

Now let the flux @ pass through the interior of the circuit. We do this
with a straight solenoid normal to the plane of the paper and lying inside the
circuit. By (59), 8, — 8, = (2¢/hic)®, or

=6— = . (60)

&, =8+t—d; & -

fic

a

The total current is the sum of J, and J,. The current through each junc-
tion is of the form (47), so that

) . : o
Jrota =]O](sm (80 +ﬁic<b) + sm(ﬁo—%fbﬂ = 2(J, sin 8y) coseh—c .

/ Insulator a

] total

Figure 25 The arrangement for experiment on
macroscopic quantum interference. A magnetic \
flux & passes through the interior of the loop. Insulator b
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Figure 26 Experimental trace of J,,, versus magnetic field showing interference and diffraction
effeets for two junctions A and B. The field periodicity is 39.5 and 16 mG for A and B, respec-
tively. Approximate maximum currcnts are 1 mA (A) and 0.5 mA (B). The junction separation is
3 mm and junction width 0.5 mm for hoth cases. The zero offset of A is due to a background mag-
netic ficld. (After R. C. Jaklevic, J. Lambe, ]. K. Mercereau, and A. H. Silver.)

The current varies with ® and has maxima when
e®/hc =sm , s =integer . (61)

The periodicity of the current is shown in Fig. 26. The short period varia-
tion is produced by interference from the two junctions, as predicted by (61).
The longer period variation is a diffraction effect and arises from the finite
dimensions of each junction—this causes ® to depend on the particular path
of integration (Problem 6).

HIGH-TEMPERATURE SUPERCONDUCTORS

High T, or IITS denotes superconductivity in materials, chiefly copper
oxides, with high transition temperatures, accompanied by high critical cur-
rents and magnetic fields. By 1988 the long-standing 23 K ceiling of T, in
intermetallic compounds had been elevated to 125 K in hulk superconducting
oxides; these passed the standard tests for superconductivity—the Meissner
effect, ac Josephson effect, persistent currents of long duration, and substan-
tially zero dc resistivity. Memorable steps in the advance include:

BaPby 75Big 2505 T,=12K  [BPBO]
La, 4sBa, ;5Cu0O, T,=36K [LBCO]
YBa,Cu,;0, T,=90K [YBCO]
Tl,Ba,Ca,Cus01g T.=120K [TBCO]
Hg, 4Ty 2BayCayCuyOy 35 T,=138K
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SUMMARY
(In CGS Units)

* A superconductor exhibits infinite conductivity.

* A bulk specimen of metal in the superconducting state exhibits perfect dia-
magnetism, with the magnetic induction B = 0. This is the Meissner effect.
The external magnetic field will penetrate the surface of the specimen over
a distancc determined by the penetration depth A.

e There arc two types of superconductors, I and II. In a bulk specimen of type I
superconductor the superconducting state is destroyed and the normal state is
restored by application of an external magnetic field in excess of a critical value
H,. A type II superconductor has two critical fields, H,) < H, < H_; a vortex
state exists in the range between I ; and H ,. The stabilization cnergy density of
the pure superconducting state is H2/87 in both type I and II superconductors.

* In the superconducting state an energy gap, E, =~ 4k;T,, separates supcrcon-
ducting electrons below from normal electrons above the gap. The gap is de-
tected in experiments on heat capacity, infrared absorption, and tunneling.

* Three important lengths enter the theory of superconductivity; the London
penetration depth A;; the intrinsic coherence length & and the normal
electron mean free path €.

¢ The London equation

__C -A
47y

(%

B
4mA3

or curl j = —

j:

leads to the Meissner effect through the penetration equation V°B = B/Af,
where A; = (mc*4mne®)"? is the London penetration depth.

e In the London equation A or B should be a weighted average over the co-

herence length £. The intrinsic coherence length &, = 2ficy/7E,.

* The BCS theory accounts for a superconducting state formed from pairs of

electrons kT and —k{. These pairs act as bosons.

¢ Type II superconductors have & < A. The critical fields are related by

H, =~ (¢/A)H, and H,, = (Mé)H,. The Ginzburg-Landau parameter « is de-
fined as A/E.

Problems

1. Magnetic field penetration in a plate. The penetration equation may be written

as A’V2B = B, where A is the penetration depth. (a) Show that B(x) inside a super-
conducting plate perpendicular to the x axis and of thickness 8 is given by

cosh (x/A)

B(x) =B, cosh (8/2n) °
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where B, is the field outside the plate and parallel to it; here x = 0 is at the center
of the plate. (b) The effective magnetization M(x) in the plate is defined by
B(x) — B, = 4mM(x). Show that, in CGS, 47M(x) = —B,(1/8A?)(6% ~ 4x?), for § <
A. In SI we replace the 41 by u,.

. Critical field of thin films. (a) Using the result of Problem 1b, show that the free

energy density at T = 0 K within a superconducting film of thickness 8 in an exter-
nal magnetic field B, is given by, for § <A,

(CGS) Fylx, B,) = Us(0) + (6% — 4x%)BY/64mA? .

In SI the factor  is replaced by  uo. We neglect a kinetic energy contribution to
the problem. (b) Show that the magnetic contribution to Fg when averaged over
the thickness of the film is BX(8/A)%/964r. (c) Show that the critical field of the thin
film is proportional to (A\/6)H,, where H, is the bulk critical field, if we consider
only the magnetic contribution to Us.

. Two-fluid model of a superconductor. On the two-fluid model of a supercon-

ductor we assume that at temperatures 0 < T < T, the current density may be
written as the sum of the contributions of normal and superconducting electrons:
Jj = Jjn t js. where jy = o(E and jg is given by the London equation. Here oy is an
ordinary normal conductivity, decreased by the reduction in the number of normal
electrons at temperature T as compared to the normal state. Neglect inertial ef-
fects on both jy and jg. (a) Show from the Maxwell equations that the dispersion re-
lation connecting wavevector k and frequency o for electromagnetic waves in the
superconductor is

(CGS) ke = dmoqwi — AP+ W ; or

(8D

where A7 is given by (14a) with n replaced by ng. Recall that curl curl B = —V?B.
(b) If 7 is the relaxation time of the normal electrons and ny, is their concentration,
show by use of the expression oy = nye*r/m that at frequencies w < 1/7 the disper-
sion relation does not involve the normal electrons in an important way, so that the
motion of the electrons is described by the London equation alone. The super-
current short-circuits the normal electrons. The London equation itself only holds
true if Aw is small in comparison with the energy gap. Note: The frequencies of
intsrest are such that @ < w,, where w, is the plasma frequency.

Structure of a vortex. (a) Find a solution to the London equation that bas cylin-
drical symmetry and applies outside a line core. In cylindrical polar coordinates, we
want a solution of

B—AVB=0

“This problem is somewhat difficult.
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that is singular at the origin and for which the total flux is the flux quantum:

27 L dp pBlp) = D, .

The equation is in fact valid only outside the normal core of radius £. (b) Show that
the solution has the limits

Blp)= (@2 In(Ajp) . (E<p<h)
B{p) = (®y2m\>)(mA/2p)"” exp(—p/A) . (p>A)

. London penetration depth. (a) Take the time derivative of the London equation

(10) to show that 3j/at = (c/4mA})E. (b) If mdv/dt = qE, as for free carriers of
charge g and mass m, show that A} = mc*/4mng”.

. Diffraction effect of Josephson junction. Consider a junction of rectangular cross

section with a magnetic field B applied in the plane of the junction, normal to an
edge of width w. Let the thickness of the junction be T. Assume for convenience
that the phase difference of the two superconductors is 7/2 when B = 0. Show that
the de current in the presence of the magnetic field is

_ Sin(y)TBe/ﬁc)
T=Jo" (TBettc)

. Meissner effect in sphere. Consider a sphere of a type 1 superconductor with crit-

ical field H,. (a) Show that in the Meissner regime the effective magnetization M
within the sphere is given by —87M/3 = B,, the uniform applied magnetic field.
(b) Show that the magnetic field at the surface of the sphere in the equatorial plane
is 3B,/2. (It follows that the applicd ficld at which the Meissner effect starts to break
down is 2H/3.) Reminder: The demagnetization field of a uniformly magnetized
sphere is —47M/3.

Reference

An excellent superconductor review is the website superconductors.org.



