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NOTATION: 111 this chapter B, denotes the applied magnetic field. 111 the 
CGS system the critical value B,, of the applied field will he denoted by the 
syn~bol H ,  in accordance with the custom of workers in superconductivity 
Valucs of B,, are given in gauss in CGS units and in teslas in ST units, with 
1 T = lo4 G. In SI we have B,,, = p a r .  
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Figure 1 Resistance in ohms of a specimen of rnerculyversus absolute temperature. This plot by 
Kamerlingh Onnes marked the discover). of superconductivity. 



CIIAPTER 10: SUPERCONDUCTIVITY 

The electrical resistivity of many metals and alloys drops suddenly to zero 
when the speci~neri is cooled to a sufficiently low temperature, often a temper- 
ature in tlle liquid helium range. This phenomenon, called superconductivity, 
was observed first by Kamerlingh Onnes in Leideli in 1911, three years after 
he first liquificd helium. At a critical temperature T,  the spccimen undergoes 
a phase transition from a state of nur~nal electrical resistivity to a supercon- 
ducting state, Fig. I. 

Superconductivity is now very well understood. It is a field with many 
practical and theoretical aspects. Thc length of this chapter and the relevant 
appendices reflect the richness and silhtleties of the field. 

EXPERIMENTAL SURVEY 

In the superconducting state the dc electrical resistivity is zero, or so close 
to zero that persistent clectrical currents have been observed to flow without 
attenuation in supcrcondi~cting rings for more than a year, until at last the ex- 
perinlentalist wearied of the experiment. 

Thc decay of supercurrents in a solenoid was studied hy File and Mills 
using precision nuclear magnetic resonance methods to measure the magnetic 
field associated with the supercurrent. They concluded that the decay t i~ne  of 
the supercurrent is not less than 100.000 years. We estimate the decay time 
below. In some superconducting materials, particularly those used for super- 
corlducting magnets, finite decay times are observed because of an irrevcrsihle 
redistribution of magnetic flux in the material. 

The magnetic properties exhibited by superconductors are as dramatic as 
their clectrical properties. The magnetic propertics cannot be accounted for 
hy the assumption that a superconductor is a normal conductor with zero elec- 
trical resistivity. 

It is an experimental fact that a hulk superconductor in a weak magnetic 
field will act as a perlect diamagnet, with zero magnetic induction in the inte- 
rior. When a specimen is placed in a magnetic field and is then cooled through 
the transition temperature for superconductivity, the magnctic flnx originally 
prcscnt is ejected from the specimen. This is called thc Meissner effect. The 
sequence of events is shown in Fig. 2. The unique magnetic properties of su- 
perconductors are central to the characterization of the superconducting state. 

The supercvnducti~lg state is an ordered state of the conduction electrons 
of the ~netal. The order is in the formation of loosely associated pairs of elec- 
trons. The electrons are ordered at temperatures below the transition temper- 
ature, and they are disordered above the transition temperature. 



Figure 2 Meissner effect in a superconducting sphere cooled in a constant applied magnetic field; 
on passing below the transition temperature the lines of induction B are ejected from the sphere. 

The nature and origin of the ordering was explained by Bardeen, Cooper, 
and Schrieffer.' In the present chapter we develop as far as we can in an ele- 
mentary way the physics of the superconducting state. We shall also discuss 
the basic physics of the materials used for superconducting magnets, but not 
their technology. Appendices H and I give deeper treatments of the super- 
conducting state. 

Occurrence of Superconductivity 

Superconductivity occurs in many metallic elements of the periodic system 
and also in alloys, intermetallic compounds, and doped semiconductors. The 
range of transition temperatures best confirmed at present extends from 90.0 K 
for the compound YBa2Cu,0, to below 0.001 K for the element Rh. Several 
f-band superconductors, also known as "exotic superconductors," are listed in 
Chapter 6. Several materials become superconducting only under high pres- 
sure; for example, Si has a superconducting form at 165 kbar, with T, = 8.3 K. 
The elements known to be superconducting are displayed in Table 1, for zero 
pressure. 

Will every nonmagnetic metallic element become a superconductor at 
sufficiently low temperatures? We do not know. In experimental searches for 
superconductors with ultralow transition temperatures it is important to 
eliminate from the specimen even trace quantities of foreign paramagnetic 
elements, because they can lower the transition temperature severely. One 
part of Fe in lo4 will destroy the superconductivity of Mo, which when pure 
has T, = 0.92 K; and 1 at. percent of gadolinium lowers the transition temper- 
ature of lanthanum from 5.6 K to 0.6 K. Nonmagnetic impurities have no very 
marked effect on the transition temperature. The transition temperatures of 
a number of interesting superconducting compounds are listed in Table 2. 
Several organic compounds show superconductivity at fairly low temperatures. 

'J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 106,162 (1957); 108,1175 (1957). 





Table 2 Superconductivity of selected compounds 

Compo~~nd T,, in K Compound T,, in K 

Nb,Sn 
Nb,Ge 
Nb,AI 
NbN 
C60 

Figure 3 Experimental threshold 
curves of the critical field H,(T) 
versus temperature for sc\reral su- 
perconductors. .%specimen is super- 
conducting bclow the curve and 
normal above the C I I ~ V .  Temperature, in K 

Destruction of Superconductivity b y  Magnetic Fields 

A sufficiently strong magnetic field will destroy superconductivity. The 
tt~reshold or critical value of the applied magnetic field for the destruction of 
supercondl~ctivity is denoted by H,(T) and is a function of the temperaturc. At 
the critical temperature the critical field is zero: H,(T,) = 0. The variation of 
the critical field with temperature for several superconducting elements is 
shown in Fig. 3. 

The threshold curves separate the superconducting state in the lower left 
of the figure from the normal state in the upper right. Note: We should denote 
the critical value of the applied magnetic field as B,,, hut this is not common 
practice among workers in superconductivity. In the CGS system we shall al- 
ways understand that H ,  - B,,, and in thc SI we have H,. - B,Jpo The s p h o l  
B ,  denotes the applied rrlagnetic field. 

Meissner Effect 

Meissner and Ochsenfeld (1933) found that if a superconductor is cooled 
in a rr~agnetic field to helow the transition temperature, then at the transition 
the lines of induction B are pushed out (Fig. 2). The Meissner effect sho~vs 
that a bulk superconductor behaves as if B = 0 inside the specimen. 
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We obtain a particularly useful form of this result if we limit ourselves to 
long thin specimens with long axes parallel to R,: now the demagnet~zing field 
contrihution (see Chapter 16) to B will bc negligible, whence:" 

The resillt B = 0 cannot be derived from the characterization of a super- 
condr~ctor as a medium of zero resistivity. From Ohm's law, E = pj, we see that 
if the resistivity p goes to zero while j is held finite, then E must be zero. By a 
Maxwell equation clBldi is proportional to curl E, so that zero resistivity im- 
plies dB/& = 0, but not B = 0. This argument is not entirely transparent, but 
the result predicts that the flux through the metal cannot changc on cooling 
through the transition. The Meissner effect suggests that perfect diamagnet- 
ism is an essential property of the supercondi~cting state. 

\'ire expect another differe~~ce between a superconductor and a perfect 
condirctor, defined as a cor~ductor in which the electrons have an infinite srrean 
free path. W e n  the problem is solved in detail, it turns out that a perfect 
conductor when placed in a magnetic field cannot produce a perrrlarlent eddy 
current screen: the field will penetrate about 1 cm in an hour.:' 

The ~nag~letization curve expected for a supercorlductor under the condi- 
tions or  the Mcissner-Ochsenfeld experiment is sketched in Fjg. 4a. This ap- 
plies quantitatively to a specimen in the forrn of a long solid cylinder placed in 
a longitudinal magnetic field. Pure speci~nens of many materials exhibit this 
behavior; they are called type I superconductors or, formerly, soft super- 
conductors. The values of H, are always too low for type I supercunductors to 
have application i11 coils for supcrcond~~cting magnets. 

Other materials exhibit a magnetization curve of the form of Fig. 4b and 
are known as type 11 superconductors. They terid to be alloys (as in Fig. 5a) 
or transition metals with high values of the electrical resistivity in the normal state: 
that is, thc electronic mean free path in the normal state is short. We shall see later 
why the mean free path is involved in the "magnctiwtion" of superconductors. 

Tjye I1 superconductors have supercondi~cting electrical properties up to 
a field denoted by H,,. Behveen the lower critical field H,, and the upper criti- 
cal field H,,  the flux density R # 0 and the Meissner effect is said to be incom- 
plete. The value of H,, may be 100 times or more higher (Fig. Sb) than 

'Diarrragnctism, the magnetization LU, and the magnetic susceptibility are defined in 
Chapter 14. The magnitude of the apparent diamagnetic susceptibility of hulk s~lpercur~ductors is 
vely much larger than in typiral diamagnetic substa~lces. In (I), M is the magnetization eql~ivalent 
to the superco~~ductirig currents in the specimen. 

3A. B. Pippard. Dynamics of condvclion electrons, Gordon and Breach, 1965. 
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Figure 4 (a) Magnetization versus applied magnetic field for a bulk snpercooductor exhibiting a 
complete Meissner effect (perfect diamagnetism). A superconductor with this behavior is callcd a 
type I ruperconductor. Above the critical field H ,  the specimen is a normal condl~ctor and the mag- 
netization is too small to be seen on this scale. Xote that minus 4vBf is plotted on the vertical scale: 
the negative value o lM corresponds to damagnclism. (b) Supcrconducti~~g lrlagnetizatio~l cuwe of- 
a type I1 superconductor The flnx starts to penetrate the specimen at a field H,, lower than the 
thermodynamic critical field ff'. The specimen is in a vortex state behveen H,, and H,,; and it has 
superconducting electrical propcrtics up to H,,. Ahovc H,, the speci~rren is a nor~~la l  conductor ill 
every respect, except for possible sllrfacr effects. For given H, the area under the magnetization 
curve is the same for a type I1 superconductor as for a type 1. (CGS units in all parts of this figure.) 

the value of the critical field H,, calculated from the thermodynamics of the 
transition. In the region benveen HC1 and H , 2  the superconductor is threaded 
by flux lines and is said to be in the vortex state. A field H,, of 410 k c  (41 tes- 
las) has been attained in an alloy of Nb, Al, and Ge at the boiling point of he- 
lium, and 540 kG (54 tcslas) has been reported for PbMo6S8. 

Commercial solenoids wonnd with a hard superconductor producc high 
steady fields over 100 kG. A "hard supercondi~ctor" is a type I1 snperconduc- 
tor with a large magnetic hysteresis, usually induced by mechanical treatment. 
Such rnaterials have an important medical application in magnetic resonance 
imaging (MKI). 

Heat Capacity 

In all superconductors the entropy decreases markedly on cooling below 
the critical temperature T,. Measurements for aluminum are plotted in Fig. 6. 
The decrease in entropy between the ~lorrnal state and the superconducting 
statc tclls us that the superconducting state is more ordered than the normal 
state, for the entropy is a mcasurc of thc disorder of a system. Some or all of the 
electrons thermally excited in the normal state are ordered in the snpercon- 
ducting state. The change in entropy is small, in aluminum of the order of lo-" 
kg per atom. The small entropy change must mean that only a small fraction (of 
the order of of the conductiorl electrons participate in the transition to 
the ordered superconducting state. The free energies of normal and supercon- 
ducting states are compared in Fig. 7. 
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Applied magnetic field B,  in gauss 

Figure 5a S~~perconductimg ~~ragnctization curves of annealed polycrystalline lead and lead- 
indium alloys at 4.2 K. (A) lead; ( R )  lead-2.08 u*. percent indium; (C) lead-8.23 wt. percent 
indinm; ( D )  lad-20.4 wl, percent indium. (After Livingston.) 

Temperature, K 

Figure 5b Strong magnetic fields are within thc capability of certain Type I1 materials. 



Temperature, K 

Figure 6 E~~t ropy  S of aluminnm in the l~nrrnal and superconducting states as a function of the 
temperature. The entropy is lower in the superconducting state because thc clcctrons are murc ur- 
dered here than in the normal statc. At any tenlyerature below the critical temperature Tc the speci- 
men car1 be put in the normal state hy application of a magnetic field stronger than the critical field. 

The heat capacity of gallium is plotted in Fig. 8: (a) compares the normal 
and superconducting states; (b) shows that the electronic contribution to the 
heat capacity in the superconducting state is an exponential form with an argn- 
ment proportiond to - 1/T, suggestive of excitation of electrons across an en- 
ergy gap. An energy gap (Fig. 9) is a characteristic, but not universal, feature of 
the supcrconducting state. The gap is accou~lted for by the Bardeen- 
Cooper-Schrieffer (RCS) thcory of superconductivity (see Appe~ldix H). 

Energy Gap 

The energy gap of superconductors is of entirely different origin and na- 
ture than the energy gap of insulators. In an insulator the energy gap is caused 
by the electron-lattice interaction, Chapter 7. This interaction ties the electrons 
to the lattice. In a superconductor the i~nportarlt interaction is the electron- 
electron interaction which orders the electrons in k space with respect to t l ~ e  
Fermi gas of electrons. 

The argument of the exponential factor in the clcctronic heat capacity of a 
superconductor is found to be -E&2kBT and not -Edk ,T .  This has been 
learnt from corriparison with optical and electron tunneling determinations of 
the gap E,. Values of the gap in several superconductors are given in Table 3. 

The transition in zero magnetic field f ro~n the superconducting state to 
the normal statc is observed to be a second-order phase transition. At a 
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Figure 7 Experilllcntal values of the fiec energy as a fimction of temperatnre fur alurninum in 
the ~u~crconducting state and in the normal state. Bclow the transition tc~nperature T, = 1.180 K 
the free energy is lower in the silperconducting state. The two curves merge at thc transition tem- 
perature, so that the phase transition is second order (there is 11" latent heat of transition at T,). 
The curve F, is measured in zero magnetic field, and F> is measured in a magnetic field snfiicient 
to put the specirncn in the normal state. (Courtesy of U. E. Phillips.) 

I I I I I I I I I I I I I I  . . 1.5 - Gallium I 

- OB, = 200G I 

- 'B,=O .& .' t 
- &S" I Tc 

G.4 - B I 
I  
I  _Y' 1.0- I 

I I 
I  

C/T = 0.596 + 0.0568 T' - 
- # 

- I - 

L I L 1 l L 1 l l l l l l  
0 0.5 1.0 

T 2 ,  K~ T</T 

(a) ( b )  

Figure 8 (a) The heat capacity of gallium in the norrnal and snpercondlcti~~g states. The normal 
state (which is restored by a 200 G field) has electronic, lattice, and (at low tempenrturcs) nuclear 
rluddrupole contrihntions. In (b) the electronic part C,, of the heat capacitj' in the soper~vnduct- 
ing state is plotted on a log scale versus T,fl: the cxpo~~ential dependence on 1IT is evident. Here 
y = 0.60 mJ mol-I deg-'. (After N. E. PlliUips.) 
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Figure 9 (a) Conduction band in the normal state: (h) enerby gap at the Fermi level in the super- 
conducting state. Electrons in excited states ahove the gap hehave as  normal electrons in rf Fields: 
they cause resistance; at dc they are shorted out hy the superconducting electrons. The gap Ez is 
exaggerated in the figure: tn~ically l$ - lo-' E,;. 

Table 3 Energy gaps in superconductors, at T = 0 

second-order transition there is no latent heat, but there is a discontinuity in 
the heat capacity, evident in Fig. 8a. Further, the energy gap decreases contin- 
uously to zero as the temperature is increased to the transition temperature T,,  
as in Fig. 10. A first-order transition would be characterized by a latent heat 
and by a discontinuity in the energy gap. 

Microwave and Infrared Properties 

The existence of an energy gap means that photons of energy less than the 
gap energy are not absorbed. Nearly all the photons incident are reflected as 
for any metal because of the impedance mismatch at the boundary between 
vacuum and metal, but for a very thin (-20 A) film more photons are transrnit- 
ted in the superconducting state than in the normal state. 



Figure 10 Reduced values of the observed 
energy gap E,(T)/E,(O) as a functioil of the 
reduced temperature T/T,, after Tomsend and 
Sutton. The solid curve is drawn for the BCS 
theory 

For photon energies less than the encrgy gap, the resistivity of a supercon- 
ductor va~~islles at absolute zero. At T 4 T,  the resistance in the superconduct- 
ing state has a sharp threshold at the gap energy. Photons of lower energy see a 
resistanceless sl~rface. Photons of higher energy than t l ~ e  energy gap see a re- 
sistancc that approaches that of the normal state because such photons causc 
transitions to unoccupied normal energy levels above the gap. 

As the temperature is increased not only does thc gap decrease in energy, 
but the resistivity for photons with energy bclow the gap energy no longer van- 
ishes, except at zero frequency. At zcro frequency the superconducting elec- 
trons short-circuit any normal electrons that have been ther~irally excited 
above the gap. At finite frequencies the inertia of t l ~ e  superco~lducting elec- 
trons prevents them from completely screerlirlg the electric field, so that ther- 
mally excited normal electrons now can absorb energy (Problem 3). 

Isotope Effect 

It ha5 been observed that the critical temperature of supcrcondi~ctors 
varies with isotopic mass. I11 mercury T,  varies from 4.185 K to 4.146 K as the 
average atomic mass A4 varies from 199.5 to 203.4 atomic mass units. The tran- 
sition terr~perature changes smoothly when we mix different isotopes of the 
same element. The experimental resillts within each series of isotopes may be 
fitted by a relation of the form 

MOT, = constant . (2) 

Observed values of cu are given in Table 4 



Tahle 4 Tsutope effect in superconductors 

Esperirnental values of w in MaT, = constant, where A4 is the isotopic mass. 

Substance Substance 

From the dependence of T,  on the isotopic mass we learn that lattice 
vibrations and hence electron-lattice interactions arc deeply involved in super- 
conductivity This was a fundamental discovery: there is no other rcason for 
the superconductirlg transition temperature to depend on the number of new 
trons in the nucleus. 

Thc orignal BCS model gave the result ?: eDebvr a M-'I2 , so that cu = 

in (2), bnt the inclusion of coulomb interactions between the electrons 
changes the relation. Nothing is sacrcd about a = i. The absence of an isotope 
effect in Ru and Zr has been accounted for in tcrms of the electron band struc- 
ture of these metals. 

THEORETICAL SURVEY 

A theoretical understandir~g of the phenomena associated with supercon- 
dnctivity has been reached in several ways. Certain results follow directly from 
thermodynamics. Many important results can be described by p~~enomenolog- 
ical equations: the London eqnations and the Landau-Ginzburg equations 
(Appendix 1). A successful quantum theory of s~iperconductivity was given by 
Bardeen, Cooper, and Schrieffer, and has provided the basis for snhscqucnt 
work. Josepl~son and Anderson discovered the importance of the phase of the 
superconducting wavefunction. 

Thermodynamics of the Superconducting Transition 

The transition between the normal and superconducting states is thermo- 
dynamically reversible, just as tlie transition between liquid and vapor phases 
of a substance is reversible. Tbus we may apply therrnody~~arnics to the transi- 
tion, and we thereby obtain an expression for the entropy difference between 
normal and supercond~~cting states in tcrms of the critical field curve H ,  ver- 
sus T. This is analogous to the vapor pressnre eq~iation for thc liquid-gas 
coexistence cunTe (TP, Chapter 10). 
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We treat a type I superconductor with a complete Meissner effect. so that 
B = 0 inside the superconductor. We shall see that the critical field H,  is a quan- 
titative measure of the free energy difference between the superconducting and 
normal states at constant temperature. The symbol H,  will always refer to a bulk 
specimen, never to a thin film. For type I1 superconductors, H,  is understood to 
be the thermodynamic critical field related to the stabilization free energy. 

The stabilization free energy of the superconducting state with respect to 
the normal state can be determined by calorimetric or magnetic measure- 
ments. In the calorimetric method the heat capacity is measured as a function 
of temperature for the superconductor and for the normal conductor, which 
means the superconductor in a magnetic field larger than H,. From the differ- 
ence of the heat capacities we can compute the free energy difference, which 
is the stabilization free energy of the superconducting state. 

In the magnetic method the stabilization free energy is found from the 
value of the applied magnetic field that will destroy the superconducting 
state, at constant temperature. The argument follows. Consider the work done 
(Fig. 11) on a superconductor when it is brought reversibly at constant tem- 
perature from a position at infinity (where the applied field is zero) to a posi- 
tion r in the field of a permanent magnet: 

M-dBo , (3) 

_=aJ 
Superconductor phase 

jm = H, -\~ormal phase 
(coexisting in 
equilibrium) 

Figure 11 (a) A superconductor in which the Meissner effect is complete has B = 0, as if the 
magnetization were M = -B,14~, in CGS units. (h) When the applied field reaches the value B.,, 
the normal state can coexist in equilibrium with the superconducting state. In coexistence the free 
energy densities are equal: F,(T, B,,) = F,(T B,). 



per unit volume of specimen. This work appears in the energy of the magnetic 
field. The thermodynamic identity for the process is 

dF = -M .dB, , ( 4 )  

as in TP, Chapter 8. 
For a superconductor with M related to B, by ( 1 )  we have 

The increase in the free energy density of the superconductor is 

on being brought from a position where the applied field is zero to a position 
where the applied field is B,. 

Now consider a normal nonmagnetic metal. If we neglect the small 
susceptibility4 of a metal in the normal state, then M = 0 and the energy of the 
normal metal is independent of field. At the critical field we have 

FN(B,) = FN(O) . (7)  
The results ( 6 )  and (7) are all we need to determine the stabilization 

energy of the superconducting state at absolute zero. At the critical value B,, 
of the applied magnetic field the energies are equal in the normal and super- 
conducting states: 

In SI units H ,  = B,,/p, ,  whereas in CGS units H,  = B,,. 
The specimen is stable in either state when the applied field is equal to 

the critical field. Now by (7)  it follows that 

4This is an adequate assumption for type I superconductors. In type I1 superconductors in 
high fields the change in spin paramagnetism of the conduction electrons lowers the energy of the 
normal phase significantly In some, hut not all, type I1 superconductors the upper critical field is 
limited by this effect. Clogston has suggested that H,,(max) = 18,400 T,, where H,, is in gauss and 
T, in K. 
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b FN .- 
2 

-8 Figure 12 Tlrc frce energy density F, of a nonmag- 

p netic normal metal is approximately independent of tlrc 

c 
intensity of the applied magnetic field B,. At a temper- 
ature T : T, the nlctal is a superconductor in zero mag- 

a, 
e, netic field, so that FJT, 0) is Iowver than F,(T, 0). AII 
Lr, applied magnetic field increases Ii, by A ~ X T ,  in CGS 

~mits, so that Fs(T, B,) = FF(T, 0)  + B;/Xv. If B, is larger 
than the critical field R,, the free energy density is 
lowcr in the normal state than in the superconducting 

I 
state, and now the rror~~ral state is the stable state. The 

B, origin of the vertical scale in the drawing is at Fs(T, 0). 
Applied magnetic field B, -+ The figurc cqually applies to Us and U, at ?' = 0. 

where AF is the stabilization free e n e r a  density of the superconducting state. 
For alu~ninum, B,, at absolute zcro is 105 gauss, so that at absolute zero 
AF = ( 105 )~ /8n  = 439 erg cm 3,  in excellent agreement with the result of 
thermal measurcments, 430 erg ~ m - ~ .  

At a finite temperature the normal and superconducting phases 
are in equilibrium when the magnetic field is such that their free encrgies 
F = U - TS are equal. The free energies of the two phases are sketched 
in Fig. 12 as a furiction of the magnetic field. Experimental curves of the 
free energes of the two phases for aluminiim are shown in Fig. 7. Because 
the slopes dF/dT are equal at the transition temperature, there is no latent 
heat at T,. 

London Equation 

We saw that the Meissner effect implies a magnetic susceptibility X = - 1 / 4 ~  
in CGS in the superconducting state or, in SI, X = - 1. Can we modify a consti- 
tutive equation of electrodyna~nics (such as Ohm's law) in some way to obtain 
the Meissr~er effect? We do not want to modify the Maxwell equations them- 
selves. Electrical conduction in the normal state of a metal is described by 
Ohm's law j = uE. We need to modify this drastically to describe conduction 
and thc hleissner effect in the superconducting state. Let us make a postulate 
and see what happens. 

\Ve postulate that in the superconducting state the current density is di- 
rectly proportiorial to the vector potential A of the local magnetic field, where 
B = curl A. The gauge of A will bc specified. In CGS units we write the 
constant of proportionality as -c/4d; for reasons that will become clear. 



Here c is the speed of light and A, is a constant with the dimensions of length. 
In SI units we write -Up,+!. Thus 

C (CGS) j = --A ; 
4TrA; 

This is the London equation. We express it another way by taking the curl of 
both sides to obtain 

C 
(CGS) curl j = - -B ; 

4 5 ~ ~ :  

- a  - 
1 (SI) curl j = -- B (11 )  

g,+: 

The London equation (10) is understood to be written with the vector po- 
tential in the London gauge in which div A = 0, and A, = 0 on any external 
surface through which no external current is fed. The subscript n denotes the 
component normal to the surface. Thus div j = 0 and j, = 0, the actual physi- 
cal boundary conditions. The form (10) applies to a simply connected super- 
conductor; additional terms may be present in a ring or cylinder, but (11) 
holds true independent of geometry. 

First we show that the London equation leads to the Meissner effect. By a 
Maxwell equation we know that 

45T (CGS) curl B = j ; 

under static conditions. We take the curl of both sides to obtain 

(CGS) curl curl B = -V'B = curl j ; 

air1 curl B = - V'B = k, curl j ; 

which may be combined with the London equation (11) to give for a super- 
conductor 

This equation is seen to account for the Meissner effect because it does 
not allow a solution uniform in space, so that a uniform magnetic field cannot 
exist in a superconductor. That is, B(r) = Bo = constant is not a solution of 
(13) unless the constant field Bo is identically zero. The result follows because 
V2B, is always zero, but B,/A; is not zero unless Bo is zero. Note further that 
(12) ensures that j = 0 in a region where B = 0. 

In the pure superconducting state the only field allowed is exponentially 
damped as we go in from an external surface. Let a semi-infinite superconductor 
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Figure 13 Penetration of an applied magnetic 
field into a semi-infinite superconductor. The 
penetration depth A is defined as the distance in 
which the field decreases by the factor eCL. Typi- 
cally, A - 500 A in a pure superconductor. 

occupy the space on the positive side of the x axis, as in Fig. 13. If B(0) is the 
field at the plane boundary, then the field inside is 

for this is a solution of (13). In this example the magnetic field is assumed to 
be parallel to the boundary. Thus we see hL measures the depth of penetration 
of the magnetic field; it is known as the London penetration depth. Actual 
penetration depths are not described precisely by hL alone, for the London 
equation is now known to be somewhat oversimplified. It  is shown by compari- 
son of (22)  with (11)  that 

(CGS) hL = (m2/4mq2)u2  ; 

for particles of charge q and mass m in concentration n. Values are p e n  in 
Table 5. 

An applied magnetic field B ,  will penetrate a thin film fairly uniformly if 
the thickness is much less than hL; thus in a thin film the Meissner effect is not 
complete. In a thin film the induced field is much less than B,, and there is 
little effect of B, on the energy density of the superconducting state, so that 
(6) does not apply. I t  follows that the critical field H, of thin films in parallel - - .  
magnetic fields will be very high 

Table 5 Calculated intrinsic coherence length and 
London penetration depth, at absolute zero 

Intlins~c Pippard London 
coherence penetration 
length 50, depth A,, 

Metal in cm in 10-%m A ~ / 5 0  

Sn 23. 3.4 0.16 
A1 160. 1.6 0.010 
Pb 8.3 3.7 0.45 
Cd 76. 11.0 0.14 
Nb 3.8 3.9 1.02 

After R. Meservey and B. B. Schwartz. 



Coherence Length 

The London penetration depth A, is a fundamental lerlgth that character- 
izes a superconductor. An indcpcndent length is the coherence length 5. The 
coherence length is a measure of the distance within which the supercouduct- 
i r~g  electron concentration cannot change drastically in a spatially-varying 
magnetic field. 

The London equation is a locul equation: it relates the current density at a 
point r to the vector potential at the same point. So long as j ( r )  is given as a 
constant time A(r) ,  thc current is required to follow exactly any variation in 
the vector potential. B i~ t  the cohcrcncc lcngth 5 is a measure of the range over 
which we should average A to ohtain j .  It is also a mcasure of the minimum spa- 
tial extent of a transition layer between normal and superconductor. Thc coher- 
ence lerlgtll is best introduced into the theory through the Landau-Ginzhllrg 
equations, Appendix 1. Now we give a plausibility argument for the energy re- 
q~iircd to modulate the superconducting alectron concentration. 

Any spatial variation in the state or  an electronic syste111 requires extra 
kinetic energy. A modillation of an cigcnfunction increases the kinetic energy 
because the modulation will increase the integral of d'p/dx2. It is reasonable to 
restrict the spatial variation of j ( r )  in such a way that thc cxtra energy is less 
than the stabilizatiori energy of the superconducting state. 

We compare the plane wave $(x) = dkX with the strongly modulated 
wavcfunction: 

,(,) = 2-112 (e:(kiq)r + &) , (15a) 

The probability dcnsity associated with the plane wave is u~iiforrrl in space: 
$*$ = e-"' eik = 1 ,  whereas q * q  is modulated with the wavevector q :  

p*q = ; ( , - N k + q ) x  + ,-ik~)(~iik+ql' + & I )  

= i ( 2  + eiQX + e-qX) = 1 + cos qx . (15b) 

The kinetic energy of the wave $ ( x )  is 6 = fi2k2/2m; thc kinctic energy of 
the rrlodulated density distribution is higher, for 

where we neglcct q' for q < k. 
The increase of energy requircd to modulate is R?kq/2nx. If this increase 

exceeds the energy gap E,, s~spercondnctivity will be destroyed. The critical 
value q ,  of the modulation wavevector is given by 
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We define an intrinsic coherence length 5, related to the critical modu- 
lation by 5, = lly,. W7e frave 

where cF is the electron vclocity at the Fermi surface. On the BCS theory a 
similar result is found: 

to = z l i o d ~ E ,  . u (17) 

Calculated values of 5, from (17) are p e n  in Table 5. The intrinsic coherence 
length to is characteristic of a pure superconductor. 

In impure materials and in alloys the coherence length 5 is shorter than 6". 
This may be understood qualitatively: in impure material the electron eigen- 
functions already have wiggles in them: wc can construct a given localized 
variation of current density with less cncrgy from wavefunctions with wiggles 
than from s~nooth wavefunctions. 

The cohcrcnce length first appeared in the Landau-Ginzburg equations: 
these equations also follow from the BCS theory. They describe the structure 
of the transition layer between normal and superconducting phases in contact. 
The coherence length and the actual penetration depth A depend on the mean 
free path C of the electrons measured in the normal state; the relationships are 
indicated in Fig. 14. When the superconductor is very impure, with a very 
srr~all C, then 5 = (Eoe)lr%nd A = A, (t0/t)"" so that A15 = A,/[. This is the 
"dirty superconductor" limit. The ratio A/< is denoted by K .  

BCS Theory of Superconductivity 

The basis of a quantum theory of superconductivity was laid by the classic 
1957 papers of Bardeen, Cooper, and Schriefler. There is a "BCS theory of 
superconductivity" with a very wide range of applicability, from He3 atoms in 
their conderlsed $lase, to type I and type I1 metallic superconductors, and to 
high-temperature supercondnctors hased on planes of cuprate ions. Further, 

Figure 14 Penetration depth A and the coherence 
length 6 as fi~nctinns of the mean free path 8 of the 0.2 
conduction electrons in the normal state. All 

I 

0.1 lenbehma in units of $, the intrinsic coherence 
length. The mNpS are sketched for $ = 10AP For 

0 1 I short mean free ~ a t h s  the coherence length be- 
0 1 2 comles sl~orter and thc penetration depth becomes 

- [ - .  longer The increase in the ratio dl[ favors type I1 
50 superconductivity. 



there is a "BCS wavefunction" cornposed of particle pairs kl' and -k&, which, 
when treated hy the BCS theory, gives the lamiliar electronic superconducti\r- 
ity observed in metals and exhihits the cncrgy gaps of Table 3. This pairing is 
known as s-wave pairing. There are other forms of particlc pairing possible 
with the BCS theory, but we do not have to consider other than the RCS wavc- 
function here. In this chapter we treat the specific accomplishments of BCS 
theory with a BCS wavefunction, which include: 

1. An attractive interaction between electrons can lead to a ground state 
separated from excited states by an energy gap. The critical field, the thermal 
properties, and most of the electrorriagnetic properties are consequences of 
the energy gap. 

2. The electron-lattice-electron interaction leads to an energy gap of the 
observed magnitude. The indirect interaction proceeds wlien one electron in- 
teracts with the lattice and deforms it; a second clcctron sees the deformed 
lattice and adjusts itself to take advantage of the deformation to lower its cn- 
ergy. Thus the second electron interacts with the first electron via the lattice 
deformation. 

3. The penetration depth and the coherence length emerge as natural 
consequences of thc BCS theory. The London equation is obtained for mag- 
netic fields that vary slowly in space. Thus the central phenomenon in super- 
conductivity, the Meissner effect, is ohtained in a natural way. 

4. The criterion for the transition temperatilre of an elcmcnt or alloy in- 
volves the electron density of orbitals D(eli) of one spin at the Fermi level and 
the electron-lattice interaction U ,  which can be estimated from the electrical 
resistivity because the resistivity at roorn temperature is a measure of the 
electron-phonon interaction. For UD(c,) 4 1 the BCS theory predicts 

where 19 is the Debye temperature and U is an attractive interaction. Thc rc- 
sult for T, is satisfied at least qualitatively by the experimental data. There is 
an interesting apparent paradox: the higher the resistivity at room temperature 
thc higher is U, and thus the ntore likely it is that the metal will be a super- 
condnctor when cooled. 

5. Magnetic f lnx  through a superconducting ring is quantized and the ef- 
fective unit of charge is 2e rather than e. The RCS ground state involves pairs 
of electrons; thus flux quantization in terms of the pair charge 2e is a conse- 
quence of the theory. 

BCS Ground State 

The filled Fermi sea is the ground state of a Ferrr~i gas of noninteract- 
ing electrons. This state allows arbitrarily small excitations-we can forrr~ an 
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Figure 15 (a) Probability P that an or- 
bital of kinetic energy E is occupied in the 
ground state of the noninteracting Fermi 
gas; (b) the BCS ground state differs 
from the Fermi state in a region of width 
of the order of the energy gap Ep. Both 
curves are for absolute zero. 

excited state by taking an electron from the Fermi surface and raising it just 
above the Fermi surface. The BCS theory shows that with an appropriate at- 
tractive interaction between electrons the new ground state is superconduct- 
ing and is separated by a finite energy Eg from its lowest excited state. 

The formation of the BCS ground state is suggested by Fig. 15. The BCS 
state in (b) contains admixtures of one-electron orbitals from above the Fermi 
energy E ~ .  At first sight the BCS state appears to have a higher energy than the 
Fermi state: the comparison of (b) with (a) shows that the kinetic energy of the 
BCS state is higher than that of the Fermi state. But the attractive potential 
energy of the BCS state, although not represented in the figure, acts to lower 
the total energy of the BCS state with respect to the Fermi state. 

When the BCS ground state of a many-electron system is described in 
terms of the occupancy of one-particle orbitals, those near eF are filled some- 
what like a Fermi-Dirac distribution for some finite temperature. 

The central feature of the BCS state is that the one-particle orbitals are 
occupied in pairs: if an orbital with wavevector k and spin up is occupied, then 
the orbital with wavevector -k and spin down is also occupied. 1f k'f' is vacant, 
then -kJ is also vacant. The pairs are called Cooper pairs, treated in 
Appendix H. They have spin zero and have many attributes of bosons. 

Flux Quantization in a Superconducting Ring 

We prove that the total magnetic flux that passes through a superconduct- 
ing ring may assume only quantized values, integral multiples of the flux quan- 
tum 2 d c / q ,  where by experiment q = 2e, the charge of an electron pair. Flux 
quantization is a beautiful example of a long-range quantum effect in which 
the coherence of the superconducting state extends over a ring or solenoid. 

Let us first consider the electromagnetic field as an example of a similar 
boson field. The electric field intensity E(r) acts qualitatively as a probability 
field amplitude. When the total number of photons is large, the energy density 
may be written as 

E* ( r ) E ( r ) / 4 ~  n(r)h.w , 



where n(r) is the number density of photons of frequency o. Then we Inay 
write the electric field in a semiclassical approximation as 

where O ( r )  is the phase of thc ficld. A similar probability amplitude describes 
Cooper pairs. 

The arguments that follow apply to a hoson gas with a large number of 
boso~is i11 tlie same orbital. We then can treat the boson probability amplitude 
as a classical quantity, just as the electromagnetic field is used for photons. Both 
amplitude and phase are then rneani~igful and observable. The arguments do 
not apply to a metal in the normal state because an alectrorl in the normal state 
acts as a single nnpaircd fcrmion that cannot be treated classically. 

We first show that a charged boson gas obeys the London equation. 
Let $(r) be the particle probability ampliti~de. Wc suppose that the pair 
conceritratior~ n = $*$ = constant. At absolute zero n is one-half of thc con- 
centration of electrons in tlie co~~duction band, for n refers to pairs. Then we 
may write 

The phase B ( r )  is important for what follows. I11 SI units, set c = 1 irl the equa- 
tions that follo\i7. 

The velocity of a particle is, from the Hamilton cquations of mechanics, 

The particlc flux is given by 

so that the electric current density is 

\t'e  nay take the curl of both sides to obtain the London equation: 

nq2 curl j = --B , rrx 

with use of the fact that the curl of thc gradirnt of a scalar is identically zero. 
The constant that multiplies B agrees with (14a). Wc rccall that the Meissner 
effect is a consequence of the London equation, which \i~e have hcrc 
derived. 

Quantization of the magnetic flux through a ring is a dramatic conse- 
quencc of Eq. (21). Let us take a closed path C througl~ tlle interior of the 
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Flux lines 

Figure 16 Path of integration C through the interior of a 
superconducting ring. The flux through the ring is the sum 
of the flux @., from external sources and the flux a,, from 
the superconducting currents which flow in the surface of 
the ring; @ - a,,, + @,,. The flux a is quantized. There is 
normally no quantization condition on the flux from exter- 
nal sources, so that a,, must adjust itself appropriately in 
order that @ assume a quantized value. 

superconducting material, well away from the surface (Fig. 16). The Meissner 
effect tells us that B and j are zero in the interior. Now (21) is zero if 

ficV8 = qA . (23) 

We form 

for the change of phase on going once around the ring. 
The probability amplitude cl, is measurable in the classical approximation, 

so that cl, must be single-valued and 

Oz - 81 = 23rs , (24) 

where s is an integer. By the Stokes theorem, 

where du is an element of area on a surface bounded by the curve C, and @ is 
the magnetic flux through C. From (23), (24), and (25) we have 2&s = q@, or 

@ = (&&/q)s . (26) 

Thus the flux through the ring is quantized in integral multiples of 2&/q. 
By experiment q = -2e as appropriate for electron pairs, so that the quan- 

tum of flux in a superconductor is 

(CGS) @, = 2 d c / %  -- 2.0678 X lo-' gauss cm2 ; 

This flux quantum is called a fluxoid or fluxon. 
The flux through the ring is the sum of the flux @,,, from external sources 

and the flux @,, from the persistent superconducting currents which flow in 



the surface of the ring: @ = a,, + Q,,. The flux cP is quantized. There is nor- 
mally no quantization condition on the flux from external sources, so that @,, 
must adjust itself appropriately in order that @ assume a qiiantizcd value. 

Duration of Persistent Currents 

Consider a persistcnt current that flows in a ring of a type I superconduc- 
tor of wire of length L and cross-sectional area A.  The persistent current main- 
tains a flux through the ring of some integral number offluxoids (27). A fluxoid 
ca~lnot leak out of the ring and thereby reduce the persistcnt current unless by 
a thermal fluctuatio~~ a minimum volume of the supercondi~cting ring is mo- 
mentarily in the normal state. 

The probability per unit time that a fluxoid will leak out is the product 

P = (attempt frequency)(activation harrier factor) . (28) 

The activation harrier factor is exp(-AF/kBT), where t l ~ e  free energy of the 
barrier is 

AF = (minimum volume)(excess free energy density of normal state) . 

The minimu111 volume of the ring that must turn normal to allow a fluxoid to 
escape is of the order of RS2, where 6 is the coherence length of the snpcr- 
cond~ictor and R the wire thickness. The excess free energy density of the nor- 
mal state is H ; / ~ P ,  whence the barrier free energy is 

Let the wire thickness he em, thc coherence length = lo-'' cm, and 
H ,  = lo3 6; then AF - erg. As we approach the transition temperature 
from below, AF will decrease toward zero, but the vali~e given is a fair cstimate 
between absolute zero and 0.8 T,. Thus the activation barrier factor is 

Thc characteristic frequency with which t l ~ e  minimum volume can attempt 
to change its state must be of the order of Eg/ f i .  If Eg = erg, the attempt 
frequency is =10-15/10-27 = 1012 s-'. The leakage probability (28) beco~rles 

The reciprocal of this is a measure of the time required for a fluxoid to leak 
out, T = 1/P = 1 0 ~ . ~ ~ ~ ~ ~ ~ s .  

The age of the universe is only loL8 s, so that a fluxoid will not leak out in 
the age of the universe, under our assumed conditions. Accordingly, the cur- 
rent is maintained. 

There are two circumstances in which the activation energy is much lower 
and a fluxoid can be observed to lcak out of a ring-either very close to tlle 
critical temperature, where H ,  is ver)i small, or whcn the material o l  the ring is 



a type I1 superconductor and already has fluxoids embedded in it. These spe- 
cial situations are discussed in the literature under the subject of fluctuatio~is 
in s~iperconductors. 

Type I1 Superconductors 

There is no difference in the mechanism of superconductivity in type I 
and type I1 superconductors. Both types have similar thermal properties at the 
superconductor-normd tra~isition in zero magnetic field. But the Meissner 
effect is eritiraly different (Fig. 5 ) .  

A good type I superconductor cxclildes a magnetic field until super- 
conductivity is destroycd siiddenly, and then the field penetrates completely. A 
good type I1 supercond~ictor excludes the field completely up to a field H,, .  
Above HC1 the field is partially excluded, but the speci~rieri re~riains electrically 
snperconducting. At a much higher field, H,,, the flux penetrates completely 
and superconductivity vanishes. (An outer surface layer of the spccimcn may 
remain supercor~ductirlg up to a still higher field Hc3.)  

A I ~  i~riportant difference in a type I and a type I1 s~iperconductor is in the 
rnean free path of the conduction electrons in the normal state. If the coher- 
ence length 5 is longer than the penetration depth A ,  the superconductor will 
be typc I. Most pilre metals are type I, with A/[ < 1 (see Table 5 on p. 275). 

Biit, when the mean free path is short, the coherence length is short and 
the penetration depth is great (Fig. 14). This is the situation when A/( > 1, 
and the superconductor will be type 11. 

We can clia~ige some ~netals from type I to type I1 by a modest addition 
of an alloyi~ig element. In Figure 5 the addition of 2 u7t. percent of indium 
changes lead from typc I to type IT, although the transition temperature is 
scarcely changcd at all. Nothing fundamental has been done to the electronic 
struetiire of lead by this amount of alloying, hut the magnetic behavior as a 
s~iperconductor has changed drastically. 

The theory of type I1 superconductors was developed by Ginzbiirg, 
Landau, Abrikosov, and Gorkov. Later Kunzler and co-workers observed that 
NbnSrl wires can carry large supercurrcnts in fields approaching 100 k c ;  this 
led to the commercial development of strong-field superconducting magnets. 

Consider thr interface between a region in the superconducting state and 
a region in the normal state. The interface has a surface eriergy that nray be 
positive or negative and that decreases as the applied magnetic field is in- 
creased. A superconductor is type 1 if the surface energy is always positive as 
the niagrietic field is increased, and type I1 if the surface cncrgy becomes 
negative as the niagnetic field is increased. Thc sign of'the snrface energy has 
no importance lor the transition temperature. 

The frcc energy of a hrilk superconductor is increased when the magnetic 
field is expelled. IIowever, a parallel field can penetrate a very thin film nearly 
uniformly (Fig. 171, only a part of the flux is expelled, and the energy of the 



(a)  ( b )  
Figure 17 (a) Magnetic field penetration into a thin film of thickness equal to the penetration 
depth A. The arrows indicate the intensity of the magnetic field. (b) Magnetic field penetration in 
a homogeneous hulk structure in the mixed or vortex state, with alternate layers in normal and su- 
perconducting states. The superconducting layers are thin in comparison with A. The laminar 
structure is shown for convenience; the actual structure consists of rods of the normal state sur- 
rounded by the supercondncting state. (The N regions in the vortex state are not exactly normal, 
hut are described by low values of the stabilization energy density.) 

superconducting film will increase only slowly as the external magnetic field is 
increased. This causes a large increase in the field intensity required for the 
destruction of superconductivity. The film has the usual energy gap and will be 
resistanceless. A thin film is not a type I1 superconductor, but the film results 
show that under suitable conditions superconductivity can exist in high mag- 
netic fields. 

Vortex State. The results for thin films suggest the question: Are there sta- 
ble configurations of a superconductor in a magnetic field with regions (in the 
form of thin rods or plates) in the normal state, each normal region sur- 
rounded by a superconducting region? In such a mixed state, called the vortex 
state, the external magnetic field will penetrate the thin normal regions uni- 
formly, and the field will also penetrate somewhat into the surrounhng super- 
conducting material, as in Fig. 18. 

The term vortex state describes the circulation of superconducting 
currents in vortices throughout the bulk specimen, as in Fig. 19. There is no 
chemical or crystallographic difference between the normal and the supercon- 
ducting regions in the vortex state. The vortex state is stable when the penetra- 
tion of the applied field into the superconducting material causes the surface 
energy to become negative. A type 11 superconductor is characterized by a 
vortex state stable over a certain range of magnetic field strength; namely, 
between HC1 and H,,. 

Estimation of H,, and H,,. What is the condition for the onset of the 
vortex state as the applied magnetic field is increased? We estimate H,, from 
the penetration depth A .  The field in the normal core of the fluxoid will be H,, 
when the applied field is H,,. 
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Type I1 superconductor 

0 

Figure 18 Variation of the magnetic field and en- 
ergy gap parameter A(x)  at the interface of super- 
conducting and normal regions, for type I and 
type I1 superconductors. The energy gap parameter 
is a measure of the stabilization energy density of 
the soperconducting state. 

The field will extend out from the normal core a distance h into the super- 
conducting environment. The flux thus associated with a single core is d2 HC1, 
and this must be equal to the flux quantum a,, defined by (27). Thus 

HC1 = @&rh2 . (30) 

This is the field for nucleation of a single fluxoid. 
At H,, the fluxoids are packed together as tightly as possible, consistent 

with the preservation of the superconducting state. This means as densely as 
the coherence length 5 will allow. The external field penetrates the specimen 
almost uniformly, with small ripples on the scale of the fluxoid lattice. Each 
core is responsible for carrying a flux of the order of ?rt2 H,, which also is 
quantized to @,. Thus 

gives the upper critical field. The larger the ratio All, the larger is the ratio of 

H,, to Hcl. 



Figure 19 Flux lattice in NbSe, at 1,000 gauss at 0 2 K ,  as ~iewed wit11 a scanning tunneling 
microscope. The photo shows the density of states at the Fermi level, as in Figure 23. The vortex 
cores have a high density of states and are shaded white; the superconducting regions are dark, 
with no states at the Fermi level. The amplitude and spatial extent of these states is determined by 
a potential well formed by A(x) as in Fig. 18 for a Type I1 superconductor. The potential well 
confines the core state wavefunctions in the image here. The star shape is a finer feature, a result 
special to NbSe, of the sixfold disturbance of the charge density at the Fermi surface. Photo cour- 
tesy of H. F. Hess. 

It remains to find a relation between these critical fields and the thermo- 
dynamic critical field H, that measures the stabilization energy density of the 
superconducting state, which is known by (9) to be H;/8n-. In a type I1 super- 
conductor we can determine H,  only indirectly by calorimetric measurement 
of the stabilization energy. To estimate H,, in terms of H,, we consider the 
stability of the vortex state at absolute zero in the impure limit 6 < A; here 
K > 1 and the coherence length is short in comparison with the penetration 
depth. 

We estimate in the vortex state the stabilization energy of a fluxoid core 
viewed as a normal metal cylinder which carries an average magnetic field B,. 
The radius is of the order of the coherence length, the thickness of the bound- 
ary between N and S phases. The energy of the normal core referred to the 
energy of a pure superconductor is given by the product of the stabilization 
energy times the area of the core: 
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per unit length. But there is also a decrease in magnetic energy because of the 
penetration of the applied field B, into the superconducting material around 
the core: 

For a single fluxoid we add these two contributions to obtain 

(CGS) f =fmre + fm,=f (HY - BY) . (34) 

The core is stable iff < 0. The threshold field for a stable fluxoid is at f = 0, 
or, with H,, written for B,, 

H,,IH, = .$/A . (35) 

The threshold field divides the region of positive surface energy from the re- 
gion of negative surface energy. 

We can combine (30) and (35) to obtain a relation for H,: 

We can combine (30),  (31), and (35) to obtain 

( H , ~ H , ~ ) ~ =  H,  , 

and 

H,, = (Al()H, = KH, . 

Single Particle Tunneling 

Consider two metals separated by an insulator, as in Fig. 20. The insulator 
normally acts as a barrier to the flow of conduction electrons from one metal 
to the other. If the barrier is sufficiently thin (less than 10 or 20 A) there is a 
significant probability that an electron which impinges on the barrier will pass 
from one metal to the other: this is called tunneling. In many experiments the 
insulating layer is simply a thin oxide layer formed on one of two evaporated 
metal films, as in Fig. 21. 

When both metals are normal conductors, the current-voltage relation of 
the sandwich or tunneling junction is ohmic at low voltages, with the current 
directly proportional to the applied voltage. Giaever (1960) discovered that if 
one of the metals becomes superconducting the current-voltage characteristic 
changes from the straight line of Fig. 22a to the curve shown in Fig. 22b. 

Figure 20 Two metals, A and B, separated by a thin layer of an 
insulator C. 



(a) ib) (c)  id) 

Figure 21 Preparation of an AVAl,OdSn sandwich. (a) Glass slide with indium contacts. (b) An 
aluminum strip 1 mm wide and 1000 to 3000 A thick has been deposited across the contacts. 
(c) The aluminum strip has been oxidized to form an A1,0, layer 10 to 20 A in thickness. (d) A tin 
film has been deposited across the aluminum film, forming an AlIA1,OdSn sandwich. The external 
leads are connected to the indium contacts; two contacts are used for the current measurement 
and two for the voltage measurement. (After Giaever and Megerle.) 

Figure 22 (a) Linear current-voltage 
relation for junction of normal metals 
separated by oxide layer; (b) current- 
voltage relation with one metal normal 
and the other metal superconducting. 

Voltage 
ia) 

l Current 

(a) (b)  
Figure 23 The density of orbitals and the current-voltage characteristic for a tunneling junction. 
In (a) the energy is plotted on the vertical scale and the density of orbitals on the horizontal scale. 
One metal is in the normal state and one in the superconducting state. (b) 1 versus V; the dashes 
indicate the expected break at T = 0. (After Giaever and Megerle.) 

Figure 23a contrasts the electron density of orbitals in the superconductor 
with that in the normal metal. In the superconductor there is an energy gap 
centered at the Fermi level. At absolute zero no current can flow until the 
applied voltage is V = Eg/2e = A/e. 

The gap Eg corresponds to the break-up of a pair of electrons in the 
superconducting state, with the formation of two electrons, or an electron and 
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a holc, in the normal state. The current starts whell eV = A. At finite 
temperatures there is a small current flow even at low voltages, because 
of electrons in the superconductor that are thermally excited across the 
energy gap. 

Josephson Superconductor Tunneling 

Under suitable conditions we observe remarkable effects associated with 
the tunneling of supercollducting electron pairs from a superconductor 
througll a layer of an insulator into another siiperconductor. Such a junction is 
called a weak link. The effects of pair tiinneling include: 

Dc Josephson effect. A dc current flows across the junction in the ab- 
sence of any clcctric or magnetic field. 

Ac Josephson effect. A dc voltage applied across the junction causes 
rf current oscillations across the junction. This effect has been utilized in a 
precision determination of the value of file. Further, an rf voltage applied with 
the dc voltage can then cause a dc current across thc junction. 

Macroscopic long-range quantum intcrference. A dc magnetic field 
applied through a superconducting circiiit containing two junctions causes the 
maximum supcrcurrcnt to show interference effects as a function of magnetic 
field intcnsity. This effect can be utilized in sensitive magnetometers. 

Dc Josephson Effect. Our discussion of Josephson ju~lction phenomena 
follows the discussion of flux quantization. Let +, be the probability amplitude 
of electron pairs on one side of a ju~lction, and let +, be the amplitudr on the 
other side. For sin~plicit~, let both superconductors bc identical. For the pres- 
erit we suppose that they are both at zero potential. 

The time-dependent Schrodinger eqnation ifia+/at = X+ applied to the 
two amplitudes gives 

Here fiT represents the effect of the electron-pair coupling or transfer interac- 
tion across the insulator; T has the dimensions of a rate or frequency. It is a 
measure or the leakagc of into the region 2, and of +, into the region 1. If 
the insulator is very- thick, T is zero and there is no pair tunneling. 

~~t +, = n;/2e'h +2 = nl" , e ' 0  '.Then 

a*, 1 - -- 
an, 80, 

at - , n , m e ' O 1 - + i + l - =  at at -iT& ; 



We multiply (39) by nye- '6  to obtain, with S = 0, - el, 

We multiply (40) by rtin e-'82 to obtain 

Now equate the real and imagi~~ary parts of (41) and similarly of (42): 

an, 
-- - 2 ~ ( n ~  TL,)'!~ sill S ; - an' - - - 2 ~ ( n , n ~ ) ~ s i n  8 ; 
at at (43) 

1/2 
-- T a s .  

at (44) 

If n, n, as for identical superconductors 1 and 2. we haw from (44) that 

a8, - ae, a 
- (0, - 0,) = 0 at at . at 

From (43) we sec that 

The current flow fiom (1) to (2) is proportional to an,lat or, the saIrie 
thing, -an,lat. We therefore conclude from (43) that the current] of super- 
conductor pairs across the ji~nction depends on thc phase diffcrencr 6 as 

where 1, is proportional to the transfer iriteractior~ T. The current J, is the 
maximum zero-voltage current that can be passed by the ju~iction. With 11o 
applied voltage a dc current will flow across the junction (Fig. 24), with a value 
between J ,  and -J, according to thc value of thc phase difference 0, - 8,. 
This is the dc Josephson effect. 

Ac Josephson Effect. Let a dc voltage V be applied across the jiinction. We 
can do this because the junction is an insulator. An electron pair experiences a 
potential energy difference yV on passing across the junction, where q = -2c. 
We can say that a pair on one side is at pote~itial energy -eV and a pair on the 
other side is at eV. The equations olnlotion that replace (38) are 

We proceed as above to find in place of (41) the equation 
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This equation breaks up into the real part 

an,/at = 2T(n1 n2)ln sin 6 , (50) 

/ 
/ 
/ 

/ 
/ 

/ 
/ 

/ 

exactly as without the voltage V ,  and the imaginary part 

ae,/at = (eV/fi) - ~ ( n ~ h , ) ~ ' '  cos 6 , (51) 

which differs from (44) by the term eV/h. 
Further, by extension of (42) ,  

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

X7oItage 
vc 

Figure 24 Current-voltage characteristic of a Josephson 

whence 

an2/& = -2~ (n ,n , ) "~  sin S ; (53)  

ae2/at = -(eV/h) - T(n,/nJm cos 6 . (54) 

junction. Dc currents flow under zero applied voltage op 
to a critical current i,: this is the dc Josephson effect. At 
voltages above V, the junction has a finite resistance, but 
the current has an oscillatory component of frequency 
w = 2eVlh: this is the ac Josepllson cffcct. 

From (51)  and (54)  with n ,  n2, we have 

a(e, - e,)iat = auat = -2etr1h 

We see by integration of (55)  that with a dc voltage across the junction the 
relative phase of the probability amplitudes varies as 

6( t )  = S(0) - (2eVtlh) . (56)  

] =lo sin [6(0) - (2eVtIfi)l . 

The superconducting current is given by (47) with (56) for the phase: 

(57)  



The current oscillates with frequency 

This is the ac Josephson effect. A dc voltage of 1 PV produces a frequency 
of 483.6 MHz. The relation (58)  says that a photon of energy fiw = 2eV is 
emitted or absorbed when an electron pair crosses the barrier. By measuring 
the voltage and the frequency it is possible to obtain a very precise value 
of e/fi. 

Macroscopic Quantum Interference. We saw in (24)  and (26)  that the 
phase difference 0, - 0, around a closed circuit which encompasses a total 
magnetic flux CJ is given by 

The flux is the sum of that due to external fields and that due to currents in the 
circuit itself. 

We consider two Josephson junctions in parallel, as in Fig. 25. No voltage 
is applied. Let the phase difference between points 1 and 2 taken on a path 
through junction a be 6,. When taken on a path through junction b, the phase 
difference is ab. In the absence of a magnetic field these two phases must be 
equal. 

Now let the flux CJ pass through the interior of the circuit. We do this 
with a straight solenoid normal to the plane of the paper and lying inside the 
circuit. By (59) ,  ab - 6, = (Ze/fic)CJ, or 

e e Sb=i30+-CJ ; 6,=60--CJ 
fic fic 

The total current is the sum of Ja and Jb. The current through each junc- 
tion is of the form (47), so that 

e@ 
= 2(Jo sin 6,) cos - 

fic 

Insulator a 

Figure 25 The arrangement for experiment on 
macroscopic quantum interference. A magnetic 
flux passes through the interior of the loop. 
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Figure 26 Experimental trace of J,, versus magnetic field showing interference and diffraction 
effccts for hvo junctions A and B. The field periodicity is 39.5 and 16 mG h r  A and B, respcc- 
titsely. Approximate ~rlaxi~rruln cnrrcnts are 1  mA (A) and 0.5 mA (B). The junction separation is 
3 mm and junction width 0.5 mm for hoth cases. The zero offset of A is due to a background mag- 
netic ficld. (hftcr R. C. Jaklevic, J. Lambe, J. E. Mercereau, and A.  H. Silver.) 

The current varies with and has maxima when 

eQl/fic = ST , s = integer . (61) 

The periodicity of the current is shown in Fig. 26. The short period varia- 
tion is produced by interference from the two junctions, as predicted by (61). 
The longer period variation is a diffraction effect and arises from the finite 
dimensions of each junction-this causes to depend on the particular path 
of integration (Problem 6). 

HIGH-TEMPERATURE SUPERCONDUCTORS 

High T,  or IITS denotes superconductivity in materials, chiefly copper 
oxides, with high transition temperatures, accompanied by high critical cnr- 
rents and magnetic fields. By 1988 the long-standmg 23 K ceiling of T, in 
intermetallic comipounds had been elevated to 125 K in bulk superconducting 
oxides; these passed the standard tests for snperconductivity-the Meissner 
effect, ac Josephson effcct, persistent currents of long duration, and substan- 
tially zero dc resistivity. Memorable steps in the advance include: 

BaPb, 75Bi, T, = 12 K [BPBO] 

La, ,5B% 15CuO4 T, = 36 K [LBCO] 
YBaZCu307 T, = 90 K [YBCO] 
T1,Ba2Ca2Cu10,, T,  = 120 K [TBCO] 
Hgo sT1, 2Ba2Ca,Cu,0,, T, = 138 K 



SUMMARY 
(In CGS Units) 

A superconductor exhibits infinite conductivity. 

A bulk specimen of metal in the superconducting state exhibits pcrfect dia- 
magnetism, with the rnagnetic induction B = 0. This is the Meissner effcct. 
The external magnetic field will penetrate the surface of the specimen over 
a distancc determined by the penetration depth A. 

There arc hvo types of superconductors, I and 11. In a bulk specimen of type I 
superconductor the superconducting state is destroyed and the ~ronr~lil state is 
restored by application of an external magnetic field in excess of a critical value 
H,. A type I1 superconductor has two critical fields, HC1 < H, < H,,; a vortex 
state exists in the range between I&, and H,,. The stabilization cncrgy density of 
the pure superconducting state is H?/S.rr in both type I and I1 snpercond~~ctors. 

In the superconducting state an energy gap, E,  = 4kBTc, separates supcrcon- 
ducting electrons below from normal electrons above the gap. The gap is de- 
tected in experiments on heat capacity, infrared absorption, and tunneling. 

Three important lengths enter the theory of superconductivity; the London 
penetration depth A,: the intrinsic coherence length 5,; and the normal 
electron mean free path t. 

The London equation 

leads to the Meissner effect through the penetration equation V% ==/At ,  
where AL = ( m ~ ~ / 4 ~ r n e ~ ) ~ ' ~  is the London penetration depth. 

In thc London equation A or B should be a weighted werage over the co- 
herence length t. The intrinsic coherence length 5, = ~ K C ~ J T ~ E ~  

The BCS theory accounts for a supercouducting state forrnad frorrl pairs of 
electrons k'? and -kJ. Thcse pairs act as bosons. 

Tyye I1 snperconductors have t < A. The critical fields are related by 
H,, = (&/A)H,  and H,, = (A/E)H,. The Ginzburg-Landau parameter K is de- 
fined as A/& 

Problems 

1.  Magnetic field penetration in a plate. The penetration equation rnay be written 
as h2V% = B ,  where A is thc penetratinn depth. (a) Slrow that B(x) inside a super- 
conducting plate perpendicular to the x axis and of thickness 6 is given by 

cosh (x/A) 
B(x' = "' cosh (6/W) 
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where B, is the field outside the plate and parallel to it; here x = 0 is at the center 
of the plate. (b) The effective magnetization M(x) in the plate is defined by 
B(x) - B, = 47rM(x). Show that, in CGS, 47rM(x) = -B,(1/8A2)(S2 - 4x2), for S 4 
A .  In SI we replace the 47r by p,. 

2. Criticalfield of thinfilms. (a) Using the result of Problem lb ,  show that the free 
energy density at T = 0 K within a superconducting film of thickness S in an exter- 
nal magnetic field B, is given by, for 6 4 A ,  

(CGS) F,(x, B,) = Us(0) + (S2 - 4 ~ ~ ) ~ 2 6 4 7 r ~ ~  

In SI the factor 7r is replaced by p,. We neglect a kinetic energy contribution to 
the problem. (b) Show that the magnetic contribution to Fs when averaged over 
the thickness of the film is ~ : (6 /~)~/967r .  (c) Show that the critical field of the thin 
film is proportional to (A/S)H,, where H, is the bulk critical field, if we consider 
only the magnetic contribution to Us. 

Two-fluid model of a superconductor. On the two-fluid model of a supercon- 
ductor we assume that at temperatures 0 < T < T,  the current density may be 
written as the sum of the contributions of normal and superconducting electrons: 
j = j, + j,, where j, = unE and js is given by the London equation. Here uo is an 
ordinary normal conductivity, decreased by the reduction in the number of normal 
electrons at temperature T as compared to the normal state. Neglect inertial ef- 
fects on bothy, andj,. (a) Show from the Maxwell equations that the dispersion re- 
lation connecting wavevector k and frequency w for electromagnetic waves in the 
superconductor is 

where A; is given by (148) with n replaced by ns. Recall that curl curl B = -V2B. 
(b) If T is the relaxation time of the normal electrons and n, i s  their concentration, 
show by use of the expression a, = nNe2r/m that at frequencies w 4 117 the disper- 
sion relation does not involve the normal electrons in an important way, so that the 
motion of the electrons is described by the London equation alone. The super- 
current short-circuits the normal electrons. The London equation itself only holds 
true if h w  is small in comparison with the energy gap. Note: The frequencies of 
intorest are such that w 4 wp, where wp is the plasma frequency. 

'4. Structure of a vortex. (a) Find a solution to the London equation that has cylin- 
drical symmetry and applies outside a line core. In cylindrical polar coordinates, we 
want a solution of 

'This problem is somewhat difficult. 



that is singular at thc origin and for wlriclr the total flux is the flux quantum: 

The equation is in fact valid only outside the mornla1 core of radius 6. (b)  Sho\i~ that 
the solution has the limits 

5.  London penetration depth. (a) Take the time derivative of the London equation 
(10) to show that aj/dt = (c2/4vA;)E. ( b )  I f  mdvldt = q E ,  as for free carriers of 
charge y and mass rn, show that A 2  = d / 4 m q 2 .  

6.  Diffraction effect of Josephson junction. Consider a junction of rectangular cross 
sectiorr with a magnetic field B applied in the plane of the junction, normal to an 
edge of width w .  Let the thickness of the junction be T. Assume for convenicncc 
that the phase difference of the two superconductors is d 2  when B = 0. Show that 
the dc current in the presence of the magnetic field is 

7 .  Meissner effect in sphere. Consider a sphere of a typc 1 s ~ i ~ z r c o n d ~ ~ c t o r  with crit- 
ical field H,.. (a) Show that in the Meissner rcgimc the effective magiretieatiur~ M 
within the sphere is given by -8vMl3 = B,, the 1111iform applied lr~agrietic field. 
(h) Show that the magnetic field at the surfacc nT the sphere in the equatorial plane 
is 3B,/2. (It follows that the applicd ficld at which the hleissner affect starts to break 
down is 2HJ3.)  Rernindcr: The demagnetization field of a ur~iformly magnetized 
sphere is -4vhfI3. 

Reference 

An excellent superconductor re\.iew is the website supcrconductors.org. 


