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Sometimes you want to magnetize a gas, to align all of the little mag-
netic moments of the gas atoms in the same direction. You might plan to
have somebody inhale the polarized gas, then look at the insides of their
lungs using magnetic-resonance imaging, or you might want to investigate
the electronic level structure of the gas atoms, and polarizing them is the
first step in a spectroscopy program. There are lots of times, in a modern
research lab, where you want a polarized gas, and the usual way to produce
it is by optical pumping.

In this lab you will learn basic optical pumping, and you will practice
it on a gas of Rubidium atoms. Rubidium is a fairly simple atom. Its
electronic structure closely approximates that of a Hydrogen atom, so we can
get a pretty good theoretical understanding. However, even in Hydrogen-like
atoms there are interesting effects that can be investigated spectroscopically
using optical pumping, and we will do that in this lab.

1 Prelab I

1.1 Rubidium’s atomic energy level structure

Rubidium in its atomic state has just one valence electron and can be well
approximated by a one-electron-atom model. Its nuclear properties are dif-
ferent from Hydrogen, however, and this will give it a different energy-level
structure. There are two commonly-occurring isotopes of Rubidium in na-
ture, 85Rb, with a natural abundance of 72%, and 87Rb, with an abundance
of 28%. In this section you will learn all about 87Rb, but the structure of
85Rb follows the same general priciples.
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Figure 1: Optical pumping can be used to polarize a gas of atoms that have
magnetic dipole moments. In practice, these atoms are often mixed with
a nonpolar buffer gas, which helps keep the polarized atoms from touching
with the walls of the container and losing their polarization.
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Figure 2: There are two commonly-occurring isotopes of Rubidium found
in nature, 85Rb and 87Rb. Both have only one valence electron and can
be approximated as one-electron atoms. The major difference between the
isotopes is in the nuclear spin I.
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Figure 3: The basic energy-level structure of a one electron atom. Bound
states have negative energy and are quantized, with different allowed amounts
of angular momentum for each energy level. To first approximation, all of the
different angular momentum states have the same energy for a given energy
number n.
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A crude model of a one-electron atom that neglects both the spin of the
electron and the nucleus gives a level structure like that shown in Figure 3.
Here, the levels are labeled by their energy quantum number n and the
orbital angular momentum `, and the notation is n`, where n = 1, 2, ... and
` = s, p, d, f, .... The use of letters to represent ` is left over from the old days
of spectroscopy, before people knew what was going on inside atoms, and the
letters stand for “sharp,” “principal,” “diffuse,” and “fundamental.” (After f
they go as the alphabet: g, h, i, etc.) This notation is known, appropriately,
as spectroscopic notation.

The spinless model does a pretty good job, considering how simple it is.
A low-resolution spectrometer will see an emission or absorption spectrum
of a one-electron atom (any alkali atom) that really does agree with the
predictions of this model. However, if we use a higher-resolution instrument,
like the optical-pumping apparatus in this lab, additional structure will show
up that the spinless model cannot account for. There are many corrections
to the basic, spinless model of the atom, but we will only be concerned with
three: taking into account the spin of the electron and of the nucleus, and
the addition of an external magnetic field.

The spin of the electron is important because it couples with the orbital
angular momentum. Essentially, the electron feels an effective magnetic field
as it moves through the electrostatic field of the nucleus. Since the electron
has an intrinsic magnetic moment, due to its spin, its energy level will be
higher if it is aligned opposite this effective magnetic field than if it is aligned
with it. This leads to an additional term in the Hamiltonian of the form L ·S,
which changes the eigenstates ever so slightly. Only the states with non-zero
orbital angular momentum are affected, and the net result is that they are
split into multiple levels, depending on the orientation of the spin. This is
known as fine-structure splitting and is illustrated in Figure 4.

Once we take electron spin into account, we have to modify our spec-
troscopic notation. The new notation is called, appropriately enough, the
modified spectroscopic notation or Russel-Saunders notation, and it goes like
this. Each state is labeled by 2S+1LJ , where S is the electron spin, L is the
orbital angular momentum, and J = L + S is the total angular momentum.
The energy quantum number n is dropped. For our single-electron atom,
S is always 1/2, but the notation allows treatment of multi-electron atoms
with their spins added in proper quantum fashion. The orbital angular mo-
mentum is again labeled with the old spectroscopic letters (S,P,D,etc.), but
this time they are capitalized. The quantum number J ranges from |L− S|
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Figure 4: Fine structure– Taking the spin of the electron into account leads to
a small splitting of the levels with orbital angular momentum. Now that there
are two angular momenta to consider, orbital and spin, we must modify our
notation. The new notation is 2S+1LJ , where S is the electron spin (1/2 for
one electron), L is the orbital angular momentum (S,P,D,etc.), and J = L+S
is the total angular momentum. The energy quantum number n is dropped.

to |L + S|, according to the rules of addition of angular momentum.
Adding the spin of the nucleus I introduces three additional terms to

the Hamiltonian, each of which are related to the nuclear magnetic moment
associated with I. You can look up a detailed treatment of this in your
favorite quantum mechanics text, but the end result is that the electron’s
orbital angular momentum, the electron’s spin, and the nucleus’ spin all add
up to a total angular momentum F = I + J , with eigenvalues |I − J | < F <
|I + J |. Each of these eigenstates of F has a slightly different energy, due to
the coupling between the electron and the nucleus’ intrinsic magnetic field,
as illustrated in Figure 5.

Finally, applying an external magnetic field further splits each of the F
levels according to their projection number M . (See Figure 6.) All this says
is that the energy of the system (atom plus magnetic field) is different for
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Figure 5: Hyperfine structure– Adding the spin of the nucleus further splits
the levels. Here we have a closeup of the 2p levels, split into 2P1/2 and 2P3/2 by
the fine-structure correction. These fine-structure levels are split according
to the total angular momentum F = I + J . This example illustrates the
splitting for 87Rb, which has I = 3/2. The 2S1/2 level also gets split, in the
same way as 2P1/2.
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different orientations of the atom, which is a perfectly reasonable assertion.
This splitting is known as the Zeeman effect. The fundamental physics of
the Zeeman effect is essentially the same as that of the fine and hyperfine
splittings in that all three are due to coupling between magnetic fields and
magnetic moments. The difference is that the Zeeman effect is due to a
magnetic field we apply in the lab, whereas the fine and hyperfine splittings
are due to intrinsic magnetic fields that occur inside the atom itself.

If the magnetic field is relatively weak, the Zeeman splitting is given by
a simple expression.

EZ = gF µBBM

Here, EZ is the Zeeman energy, the difference in energy between the state
with projection number M and the unperturbed hyperfine level. The mag-
netic field strength is B, µB is the Bohr magneton, and the coupling constant
gF is known as the Landé g-factor. This g-factor is not the same as the bare
electron’s g-factor, and it is different for each hyperfine level.

gF = gJ
F (F + 1) + J(J + 1)− I(I + 1)

2F (F + 1)
,

and

gJ = 1 +
J(J + 1) + S(S + 1)− L(L + 1)

2J(J + 1)
.

A word about magnitudes is in order here. The fine-structure splitting is
very, very small compared with the spacing between the excitation levels 1s,
2s, etc., and the hyperfine splitting is much, much smaller still. The Zeeman
splitting, however, can conceivably be as big as the hyperfine splitting, or
even bigger, if a strong enough magnetic field is applied. In practice, it is
difficult to generate high enough fields to get well into the strong-field regime,
but even in this lab we will begin to see deviations from the weak-field limit
at our highest field values.

1. Evaluate the Landé g-factors for the highest-F hyperfine levels of the
2S1/2 state, in both isotopes of Rubidium.

2. Evaluate the Zeeman splitting for the highest-F hyperfine levels of
the 2S1/2 state, for both isotopes of Rubidium. What frequencies of
electromagnetic radiation would you need to induce transitions between
these Zeeman levels in a 1 Gauss magnetic field?
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Figure 6: Zeeman splitting– If we add an external magnetic field, each of
the individual F levels splits according to its angular-momentum projection
number M , i.e. the orientation of its magnetic moment. Of all the splittings
we have considered so far, this is the only one whose magnitude can be
comparable to the next larger correction, in this case the hyperfine splitting.
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Figure 7: Setup for measuring absorption vs. temperature. Use unpolar-
ized light for this part of the lab, with only the interference filter to block
everything but the 795 nm line.

3. Sketch the energy-level structure of 85Rb, including both fine and hy-
perfine corrections.

1.2 Absorption and cross sections

4. Show that the intensity of light falls off exponentially as the light travels
through an absorbing medium. Specifically, show that

I = I0e
−σρx,

where I is the intensity of the light after it travels a distance x in
the medium, I0 is the initial intensity, σ is the effective cross section,
and ρ is the density of atoms in the medium. Hint: Treat the whole
problem classically, pretending that both the photons and the atoms
are spheres. Consider any photon that touches an atom to be taken out
of the incident beam, either by scattering or absorption, and calculate
the probability that a photon will make it through a distance x without
touching an atom.

2 Lab I

2.1 Absorption and cross section

Set the apparatus up as shown in Figure 9. Locate the controls for the cell
heater, set the temperature to 300 K, and cover the apparatus with the black
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cloth provided to block out any stray room light. After the temperature has
stabilized (about thirty minutes), measure the transmitted intensity of the
light with the photodetector. Measure the transmission as a function of
temperature from 300 K to 400 K, then fit the theoretical absorption you
calculated in the prelab to your data. You will need to know the density of
the Rubidium gas as a function of temperature, which is given approximately
in Table I.

Table I: Density of Rubidium gas as a function of temperature [3].
T (K) ρ (m−3)
290 3.3× 1015

300 1.1× 1016

310 2.9× 1016

320 7.5× 1016

330 1.8× 1017

340 4.3× 1017

350 8.3× 1017

360 1.5× 1018

370 3.7× 1018

380 6.3× 1018

390 1.2× 1019

400 2.4× 1019

(When performing the fit, don’t forget to add a constant intensity to
your theoretical formula to account for nonresonant light that leaks into the
system.) From your fit, calculate a value for the effective cross section σ.
How does this compare with the geometric cross section of Rubidium or the
photons?

3 Prelab II

3.1 Circularly-polarized light

5. Read Section 2.4 of Fowles [1], and do Exercises 2.5 and 2.6 (p. 54).
Pay particular attention to the discussion on how to generate circularly-
polarized light using a quarter-wave plate and linear polarizer. You will
have to do this for the lab.
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6. (Optional) Read Section 2.5 in Fowles, on the Jones Calculus, and do
Exercises 2.7 through 2.10.

7. (Optional) Show that the electric-dipole selection rules for circularly
polarized light require either mf = mi + 1 or mf = mi − 1, but not
both, for a given handedness of the light. Here, mf and mi are the final
and initial angular-momentum-projection numbers along the direction
of propagation of the light. Hint: Don’t evaluate the matrix elements!
Express the Hamiltonian for the circularly-polarized light as a spheri-
cal tensor operator, then use the Wigner-Eckart theorem [4] to decide
which transition probabilities are zero and which are not.

3.2 Optical pumping

Now consider what happens when a photon is introduced that has the right
energy to lift an electron out of the 1s, 2S1/2 state and put it into the 2p, 2P1/2

state. The hyperfine levels of the 1s, 2S1/2 state are close enough together
that they are more or less equally populated. That is, their spacing is much
less than kBT , and the valence electron in any given atom has about an
equal probability of being in any F state with any M . An electron in any
one of these states will get excited by the photon into one of the (F, M)
states in 2P1/2, but there are only certain states it can go to. For example,
the electron’s final M value, after it lands in the excited state, can’t differ
from its initial M value by more than one. A photon is just not capable of
changing M by more than one.

Whether M changes by +1, −1, or 0 depends on the nature of the pho-
ton. If the applied magnetic field is parallel to the direction of propagation
of the photon, then a right-circularly-polarized photon will always induce
transitions that have ∆M = +1. Left-circularly-polarized light produces
∆M = −1. The same thing is true for emission. An electron can fall from
the 2p, 2P1/2 level into the 1s, 2S1/2 level and emit a photon with right or left
circular polarization, depending on whether ∆M is +1 or −1. For emission,
both cases are equally likely. For absorption, we control which kind of photon
is incident, so we can control ∆M .

Now we are in a position to polarize atoms. If we shine right-circularly-
polarized light and apply a magnetic field, along the same direction, to a gas
of atoms, each absorption will force ∆M = +1, whereas each emission event
will have, on average, ∆M = 0. Repeated absorption and reemission will
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Figure 8: The electrons in a population of atoms can be pumped into the
highest M level of the ground state by repeated absorption and reemission of
photons. If we only provide right-circularly-polarized photons, then ∆M =
+1 for every absorption. The atoms can reemit any kind of photon, so on
average ∆M = 0 for reemission. A few iterations of this, and all the electrons
end up in the highest M level of the ground state. This diagram illustrates
optical pumping between F = 1 sublevels in Hydrogen, where I = 1/2.
Rubidium works the same, except that there are more levels.

“walk” the electrons into the 1s state with the highest value of M , as shown
in Figure 8.

Once polarized, the gas will have a total magnetization which we could,
in principle, measure. However, it is much more useful to look at how well
the gas absorbs the photons. As long as absorption can occur, the gas will be
partially opaque to our circularly-polarized light. Once all of the electrons
are pumped into the highest M state and the gas is polarized, absorption can
no longer occur. The pumped electrons have nowhere to go that would satisfy
the ∆M = +1 requirement. When it is in this state, the gas is transparent
to our photons.

Our gas will remain transparent as long as the polarization is maintained.
If we switch off the magnetic field, the polarization will be lost, and the gas
will become opaque. Similarly, pumping, and hence absorption, can occur if
we scramble the electrons in the ground state by applying an RF signal that
is resonant with the Zeeman splitting. In either case, the light falling on the
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Figure 9: The basic setup for observing absorption changes due to optical
pumping. The gas being pumped is inside a cell, usually a cylinder made of
glass and sealed, along with a buffer gas. A magnetic field and circularly-
polarized light are both applied along the same axis, and the transmission of
the cell is measured with a photodiode. An additional radiofrequency (RF)
magnetic field may be applied to drive transitions within the Zeeman levels
and depolarize the gas.

photodetector drops when pumping is occurring, and is at a maximum when
the gas is polarized.

8. The absorption diagram in Figure 10 is representative of a single gas
species. The cell you will be working with contains two different iso-
topes of Rubidium. What absorption curve do you expect for it? Sketch
your expected signal, and explain your reasoning.

3.3 The quadratic Zeeman effect

Our simple model of the Zeeman splitting predicts equal splitting between
the M levels of a given state. This simple model is only an approximation,
valid in the limit of very weak magnetic fields. In the weak-field limit, the
Hamiltonian is diagonal in the (F, MF ) basis. However, in the strong-field
limit, it is the (J, MJ , I, MI) basis that diagonalizes the Hamiltonian, and
therefore the energy level structure is different. In the transition region
between these two regimes, the spacing between the levels is not equal.

9. Read Section E of Chapter XII in Cohen-Tannoudji, volume two [2], on
the Zeeman effect. Find a formula for the spacing between the Zeeman
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Figure 10: A typical absorption diagram for an apparatus like that shown in
Figure 9. Light falling on the photodiode drops to zero whenever pumping
occurs and is maximized when the gas is polarized. Depolarization occurs
both when the field is switched off and when the RF field becomes resonant
with the Zeeman splitting of the ground state.
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levels in the Hydrogen 1s, F = 1 state as a function of magnetic field
(h̄ω0). Plot the frequency necessary to induce transitions between these
levels as a function of magnetic field from h̄ω0 = 0 to h̄ω0 = Ah̄2.

10. Sketch the absorption-vs.-magnetic-field curve you expect in an optical
pumping experiment using Hydrogen in the intermediate-field regime.
Explain your reasoning.

11. Now consider Rubidium. In this case, I = 3/2 or I = 5/2, depending
on the isotope. Sketch the Zeeman diagram (for arbitrary field) for
both isotopes. Identify the energy eigenstates in each field regime.
Hint: Think about how angular momenta add. If you understand this,
you shouldn’t have to do any calculations for this exercise, other than
adding some fractions.

12. Sketch what you expect the absorption-vs.-field curve to look like for
Rubidium in the intermediate-field regime. Explain your reasoning.

3.4 Rabi oscillations

13. Read Section C.3 of Chapter IV in Cohen-Tannoudji, volume one, on
induced oscillations between coupled states in a two-state system. You
may want to look over all of Section C, just to get used to the notation.
If an RF electromagnetic field is used to drive transitions between levels,
what relationship do you expect there to be between the frequency of
the Rabi oscillations and the strength of the applied field?

14. Read Compliment HIV of Chapter IV in Cohen-Tannoudji. What is
one observable signature of the presence of an unstable state? What
can a quantitative measurement of this signature tell you about the
unstable state?

4 Lab II

4.1 Weak-field resonances

Start with the apparatus set up as you left it at the end of the last lab session,
where you measured absorption as a function of temperature for unpolarized
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Figure 11: Setup for measuring resonant absorption with circularly polarized
light. Orient the apparatus to minimize the effect of the Earth’s magnetic
field.

light. Now add the linear polarizer and quarter waveplate to produce circu-
lar polarization, making sure the orientations are correct. (Remember the
description in Fowles of this arrangement, and do this “downstream” of the
interference filter.) You will apply a horizontal magnetic field for this ex-
periment, and you will need to make sure that all other magnetic fields are
reduced as far as possible. Remove any magnetic objects (anything iron or
steel, along with any permanent magnets) from around the apparatus, and
turn the apparatus so that its axis is North-South. You will fine-tune this
alignment and use the vertical coils to compensate for the Earth’s magnetic
field in a little bit.

Use a second linear polarizer after the quarter wave plate to check the
circular polarization. If it is properly circular, the light intensity falling on the
photodetector should not depend on the angle of the second polarizer. Why
is this, and what would it mean if the intensity did depend on the polarizer’s
angle? Use an oscilloscope to measure the output of the photodetector, and
once you have verified circular polarization, don’t forget to remove the second
polarizer!

Now null all the magnetic fields in the Rubidium cell except those along
the optical axis. Set the cell temperature to 320 K, and allow it to come
to equilibrium. There are two controls for the horizontal-field, one for a
static field (large), and one for a slow sweep field (small). Leave the static
part at zero, cover the apparatus with the black cloth, and set up a slow
sweep. Send both the sweep voltage and the output of the photodetector
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to an oscilloscope, and display the photodetector output versus the sweep
field in the scope’s XY mode. You should see a dip in the output of the
photodetector when the total field (applied plus Earth’s) on the cell is zero
along the optical axis. This dip is the same one as the central absorption line,
at B=0, in Figure 10, but it will probably not be as well defined. Adjust the
rotation of the apparatus and the current through the vertical compensating
coils to achieve the minimum width for this absorption line, and experiment
with different sweep rates to get a clean-looking line. Take a screen shot of
your best zero-field absorption line, print it out, and tape it in your lab book.
This line will probably not occur at zero current, since there may be some
residual Earth’s magnetic field along the optical axis. Record the current, so
that you can later determine this residual field.

Now apply a signal to the RF coils at a frequency of about 150kHz.
Right now its amplitude is not important. You will optimize it after you
have found the Zeeman resonances. Hunt around until you have found the
Zeeman resonances, then adjust the RF amplitude to get the cleanest lines.
Take a screenshot of the absorption curve, including the Zeeman transitions,
and put it in your lab book. How does this compare with the prediction you
made in the prelab? The relative amounts of 85Rb and 87Rb inside the cell
are not necessarily the same as those found in nature. Assuming that both
isotopes have the same cross sections, what are the isotopic abundances of
each species inside the cell?

Measure the current in the sweep field at each Zeeman resonance, calcu-
late the magnetic field, and compare with your expectations from the prelab.
The relationship between current in the coils and magnetic field at the cell
is the usual Helmholz one,

B = 9× 10−3Gauss
NI

R
, (1)

where I is the current in amps, N = 11 is the number of turns in the
coil, and R = 0.16m is the average radius of the coils. Do this for several
RF frequencies and both isotopes. Plot the Zeeman resonance frequencies
of both isotopes as a function of magnetic field. (Don’t forget to take the
residual Earth’s field into account!) Do the slopes of these lines agree with
your expectations?

(Optional) Use the Zeeman resonances to calibrate both the sweep-field
and static-field coils, obtaining formulas analogous to Equation 1 but more
accurate. You will need this if you choose to do study the intermediate-field
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Zeeman effect quantitatively using the Breit-Rabi equations, which will be
an optional exercise later in the lab.

4.2 Intermediate-field resonances: Quadratic Zeeman
effect

Apply a large, horizontal magnetic field using the static-field coils, and sweep
around the Zeeman resonances. Does the structure of these resonances agree
with your predictions from the prelab? Do you see the expected number
of lines? Do this for several different amplitudes of the RF excitation, take
screenshots of your results, and comment on what you see. Hint: You will
have to determine what the best values of the static field, RF frequency and
amplitude, etc. should be to do this experiment. Describe, in your lab book,
why you chose the values you decided to use.

(Optional) Look up, or derive, a quantitative formula for the energies of
the Zeeman transitions in the intermediate-field limit for 87Rb. The formu-
las for the Zeeman levels in an arbitrary field are known as the Breit-Rabi
equations in the literature. The Breit-Rabi equations for Hydrogen are given
at the end of Chapter XII in Cohen-Tannoudji, which you read as part of
your prelab exercises. Make a quantitative prediction for the spacing be-
tween the RF transitions for 87Rb, and compare it with your observations.
You may want to take data at more than one field value. Also recall that,
in order to do this experiment properly, you need to have done the optional
field-calibration exercise earlier.

4.3 Rabi oscillations

For this experiment you will want to start with an already-polarized gas, then
suddenly turn on an RF field that is resonant with the Zeeman splitting and
see what happens. Pick a relatively low RF frequency that will be resonant
with the Zeeman splitting in the weak-field limit. Turn off the sweep field,
and adjust the static field until you are on resonance for one of the Zeeman
transitions. Attach a square-wave signal with an amplitude of 0 to +5 volts
and a frequency of a few hertz to the modulation input on the front panel, to
chop the RF signal on and off. Look at the transmitted light intensity versus
time on an oscilloscope, take a screenshot for your notebook, and explain
what you see.
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In the prelab exercises, you made two predictions about Rabi oscillations.
The first was a quantitative relationship between the frequency of the oscil-
lations and the RF amplitude. Do this experiment for several values of the
RF amplitude, and check your prediction. The second prediction was more
qualitative. Look for the signature you predicted, and discuss what you see.
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