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INTRODUCTION

In this experiment the resistivity and Hall effect in a crystal of n-type
germanium will be determined as a function of temperature (85 K to 350 K, or

    −183oC to     80o C) and the results will be compared to simple and useful theories.

RESISTIVITY AND ITS TEMPERATURE DEPENDENCE:

If a voltage is applied to a bar of solid material, a current will flow through it.
The resistance, R, of the crystal is the ratio of the voltage to the current.  The
resistivity, ρ , is calculated as follows:

      
R =

V
I

             ρ =
RA
l

(1)

  l  is the length of the bar and A is its cross-sectional area.

Germanium is a semi-conductor.  The typical behavior of resistivity of a
semiconductor versus temperature is shown,

extrinsic region intrinsic region

temperature

resistivity
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For semiconductors, one must first divide the above figure into low and high
temperature regions:

(1) In the low temperature region, the electrons released from impurities and
defects in the crystal conduct the electricity.  This region is called the "extrinsic"
region.  The temperature dependence of the "extrinsic" resistivity primarily arises
from scattering of these electrons from thermal motion of ions (lattice vibration).

(2) In the high temperature region, the electrons excited from the valance band
to the conduction band for the majority atoms in the semiconductor dominate the
conduction of electricity.  This region is called the "intrinsic" region.  In this
analysis, we will be concerned with the temperature dependence in both the
extrinsic and intrinsic resistivities.

The current density J and the electric field E  in the material bar are

      
J =

I
A

              E =
V
l

(2)

The resistivity is then expressed as,

  
ρ =

E
J

(3)

Under the influence of the applied electric field E, the electrons that conduct the
current travel an extra distance λ over an averaged time t  (the mean flight time)
between two successive scattering events,

  
λ =

1

2

eE

m∗ t 2 (4)

λ  is also called the mean free path.  The distance traveled with the initial thermal
velocity of an electron does not contribute to the total current and is neglected

here.    m
∗  is the effective mass of the conduction electrons, which may be

different from the mass of free electrons in the case of semiconductors.

We can compute the drift velocity   v d  of the electrons as they move through the
material bar by

  
v d =

λ
t

=
1

2

eE

m∗ t (5)
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  v d  is much smaller than the mean thermal velocity of the electrons in the n-type
germanium.  As a result, the mean flight time between two successive scattering
is determined by

  t = λ v (6)

Since   v = 3kBT m∗ , we have

  
v d ≈

1

2

eE

m∗
λ

3kT/m∗
=

eEλ
2 3m∗kT

∝
λE

T
(7)

Within the frame work of classical physics, particularly based on the concept of
the mean free path for a molecule in a volume of gas, one finds that the mean free
path of electrons in a solid λ  is a function of temperature in itself.  As the
temperature increases, the positive ions as scattering centers vibrate more.
Classically one takes the scattering cross-section to equal the area swept out by a

scattering center during its vibration.  This area,   S = πr 2 , is proportional to the

potential energy of a positive ion and therefore has the form,   V r( ) = Kr2 2 ,  K is
the effective spring constant.  Since the thermal energy   k BT  is equally partitioned
between the kinetic energy and the potential energy for a given vibrational
mode, we expect the scattering cross-sectional area   S  to be proportional to T,

  
S = πr 2 ~ V r( ) ~ T (8)

The mean free path λ  is related to the cross section   S  through the equation (Reif,
p. 471)

  
λ =

1

2n sS
∝

1

T
(9)

where   n s  is the number density of positive ions (scattering centers).  Combining
equation (7) and (9), we have

  
v d ∝

E

T
3
2

(10)

If there are   n e  electrons per unit volume, the electrical current density     
r 
J  is given

by,

    

r 
J = n e −e( )v v d ∝

E

T
3
2

(extrinsic region) (11)
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Then ρ  should have the following temperature dependence

  
ρ=

E

J
∝ T

3
2  (extrinsic region) (12)

Such a simple classical theory qualitatively describes the temperature
dependence of the resistivity for germanium in the extrinsic region when the
electrons density is roughly a constant.  In the intrinsic region (read the materials on
Experiments in Modern Physics by Melissinos from page 80 to 98),  the electron density
is dominated by that of electrons thermally excited from the valence band to the
conduction band of germanium,

  
n i ≅

2πm∗k BT

h2

 
 
  

 

3
2

exp −
Eg

2k BT

 
 
  

 
 (intrinsic region) (13)

    

r 
J = n i −e( )r v d ∝exp −

Eg

2k BT

 
 
  

 
 (intrinsic region) (14)

  
ρ=

E

J
∝ exp

Eg

2k BT

 
 
  

 
 (intrinsic region) (15)

A related concept is the drift mobility µ  which is the ratio of the magnitude of
the drift velocity to the applied electric field

    
µ =

r 
v dr 
E 

=
r 
J r 
E 

 
 
  

 
 1

ne −e( ) =
−1

nee( )ρ ∝ T− 3
2 (16)

This analysis assumes that the electric current is carried by electrons only.
For information on the treatment of two types of charge carriers, see p. 86 of
Experiments in Modern Physics by Melissinos.

2-HEG-4



HALL EFFECT

When an electric current     
r 
J = n e −e( )r v d = Jˆ y , driven by an applied electric field

    
r 
E = E ˆ y , is flowing along y-axis (J > 0) in a bar of solid material placed in a

magnetic field     
r 
B = Bˆ z  along z-axis, the conducting electrons experience a

magnetic force

    
r 
F m = −e

r 
v d ×

r 
B (17)

The force is perpendicular to the current flow (    ∝
r 
v d), and causes the

accumulation of electric charges on the two faces of the bar that are parallel to the
directions of the current and the magnetic field.  In this case, the excess electrons
are accumulated on the surface at x = 0, and an equal amount of excessive
positive charge is accumulated on the surface at x = - W.

The accumulated electric charges on the shaded faces produces an electric
field pointing along the positive x-axis and a voltage difference between the
shaded faces develops.  The electric field along the x-axis produces an
electrostatic force that eventually balances the magnetic force.  This resultant

electric field    
r 
E x = EH

ˆ x  is the Hall field     
r 
E H , and the associated voltage difference is

the Hall voltage   V H .  Clearly along x-axis,

    
r 
F E +

r 
F m = −e( )

r 
E H +

r 
v d ×

r 
B ( ) = 0 (18)

and thus
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r 
E H +

r 
v d ×

r 
B = 0 (19)

Thus for electrons with     
r 
v d = vd

ˆ y  (  v d < 0 ) pointing in the direction opposite to     
r 
J ,

  EH = −vdB (20)

In term of mobility     µ =
r 
v d

r 
E = vd E, we can express the Hall field as

  EH = −µEB (21)

If we define the Hall coefficient   RH  as

  
RH =

Ex

Jy Bz

=
EH

JB
(22)

by combining equation (21) and (22), we find

  RH = −µρ ; (23)

by combining equation (11) and equation (20) with equation (22), we arrive at

  
RH = −

vd

J
=

1

n ee
> 0 (24)

If the electric current is dominated by holes that carry positive charges, we will
find equation (20) and equation (24) are still valid with   v d > 0 .  Namely,   RH < 0 .
This means that given the directions of the electric current and the applied
magnetic field, one can determine the sign of the electric charge carriers from the
direction of the Hall field or equivalently the sign of the Hall coefficient   RH .

In the intrinsic region of a semiconductor, both electrons and holes participate
the electric current, the suitable equation for the Hall coefficient can be found on
page 87 of Experiments in Modern Physics by Melissinos.  It can be empirically
written as

  
RH =

rH

nee
(25)

with   r H  close to unity if one type of charge carriers dominates the electric
current.
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EXPERIMENTAL PROCEDURES:

The resistivity and Hall effect measurements can be done simultaneously.

The data are collected over a temperature range from     −180oC to     80o C.  The
apparatus is shown below.

The germanium single crystal sample is enclosed in a copper chamber for the
purposes of both temperature regulation and protection.  It has a width   w = 5 mm,
a thickness   t = 1.1 mm, and a length     l = 13 mm .  PLEASE DO NOT OPEN THE
SAMPLE CHAMBER.

The sample crystal is wired for a four-lead resistance measurement as shown
in the next page.  It allows the voltage across the sample to be measured without
the interference of the contact resistance.  A high impedance voltmeter is used so
that an almost negligible current flows through the connecting wires.

The total current through the germanium crystal should be less than 4 mA.
To  provide this limitation, a current-limiting resistor of 10 KΩ is connected in

series with the germanium sample which has a nominal resistance of 300Ω.  A dc
power supply is used to apply a voltage of 20 to 30 volts across the resistor-sample
network.  Make sure that the applied voltage does not exceed 40 volts !!
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The sample and the wire connection have the following geometry:

To measure the Hall voltage   V H , one can not simply attach two leads on the
two opposite surfaces of the sample that are parallel to the current and the
applied magnetic field.  This is because that a slight misalignment of the two
leads along the direction of the current would introduce an ohmic voltage drop
along the direction of the current to the "measured value" of the Hall voltage.
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To eliminate such an ohmic voltage in the Hall voltage measurement, an
adjustable potentiometer (the balance pot) is added between two spaced-out
contact points on one side surface of the sample.  A potential difference exists
between these two points due to the ohmic potential drop along the current path
when the magnetic field is removed.  There is a point along the current path in
the balance pot which is at the same potential as the contact point on the opposite
side in the absence of the applied magnetic field.  You measure the Hall voltage
between this point and the contact point on the opposite surface in the presence
of magnetic field.  Adjust the potentiometer to null this voltage in the absence of
a magnetic field.

The horse-shoe shaped magnet of field strength of roughly 800 gauss is
placed with the small Dewar flask in the gap.  Carefully rotate the magnet about
a vertical axis until the maximum in the Hall voltage is achieved.  This is the

position that the magnetic field is perpendicular to the 5-mm × 13-mm surfaces.

TEMPERATURE REGULATION OF THE CRYOSTAT

The control of the sample temperature is achieved through the liquid
nitrogen cooling and the electrical heating.  The sample is attached to one end of
an isolated copper rod while the other end is submerged in a liquid nitrogen
dewar (LN2).  Close the sample end, the copper rod is wound with many turns of
electrical heating wires.  The combination of the electrical heating and the LN2

cooling provide a desirable sample temperature range from     − 181o C to     80o C.

A thermocouple sensor is placed next to the sample.  With the reference
probe submerged in ice water, the thermocouple readings is fed to a Eurotherm
808 temperature controller.  The controller regulates the sample temperature by
controlling the electrical heating power to the copper rod, based on the difference
between the actual sample temperature and the user set temperature.

Here is the procedure to use the Eurotherm 808 controller to control the
sample temperature:

(1) Make sure that the sample has been cooled with liquid nitrogen for a couple
of hours.  You want to fill the liquid nitrogen (to the blue line on the inside
wall of the dewar to avoid submerging the apparatus other than the copper
rod) before the class start to save time;

(2) Make sure that the reference probe is submerged in ice water;
(3) Make sure that the banana plugs for the thermocouple from the sample

assembly is connected to the temperature control box;
(4) Make sure that the four-pin connector for delivering the electrical heating

power is temporarily disconnected;
(4) Turn the switch next to "AC" on the control box to "on";
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(5) The front panel of the Eurotherm 808 Controller should have two displays:
the upper display is the current sample temperature, obtained from the
thermocouple; the lower display is the set temperature;
Since the heating power is cut off from the sample assembly, the difference
between the set temperature and the sample temperature remains;

(6) You can change the set temperature by pressing the up arrow "∆" or down

arrow "∇" on the front panel;
Initially, set the temperature at or below the current sample temperature;
(DO NOT SET THE SET POINT OVER 100 °C !!)

(7) Connect the four-pin connector is connected from the sample assembly to the
temperature box;
(Note: make sure that the orientation of the four pins is correct as indicated
by the matching bumps on the connector and on the receptacle);
There should be no change in either the set temperature and the sample
temperature

(8) Now increase the set temperature to a desired value, you will notice that the
sample begins to increase;
The temperature rise continues until the two temperatures are equal.
(Note:  the clicking sound comes from the relay inside the control box being
activated or deactivated, a sign of healthy temperature regulation).
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DATA ANALYSIS FOR RESISTIVITY MEASUREMENT:

In the extrinsic region, namely, at temperatures well below the maximum of

the resistivity, the resistivity is expected to have a power law or   T
a -dependence

on temperature as shown in equation (12).  Calculate   a  from your data.

temperature

resistivity

T a

When a set of data follow a power law, such as that described by equation
(12), the proper display of the data is a log-log plot.  For example, if one has the
equation

  ρ= c Ta (26)

By taking logarithms on both sides, one obtains,

  ln ρ = ln c + a lnT (27)

which is the equation of a straight line with slope   a . and intercept   ln c .  One can
then make a least squares fit to equation (27) to find the best value of the
exponent   a .

In the intrinsic region, namely, at temperatures above the maximum of the

resistivity, the resistivity is expected to have an Arrhenius   exp a T( )-dependence

on temperature as shown in equation (15).  Determine the energy gap   Eg  from
your data.

When a set of data follows an Arrhenius law as is   exp a T( ) , the proper
display of the data is an Arrhenius plot.  For example, if one has the equation

  ρ= cexp a T( ) (28)

By taking the logarithm on both side, one obtains
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  ln ρ= lnc + a T (29)

An Arrhenius plot of ρ  is a plot of   ln ρ  versus   1 T .  It is a straight line again with
a slope   a  and the intercept   ln c .  One can make a least-square fit to equation (29)
using ρ  as the data to find   Eg 2k B  and in turn   Eg .

DATA ANALYSIS FOR HALL EFFECT MEASUREMENT

You will measure   RH   as a function of temperature.  From these data and the
resistivity data, compute µ  and   r H ne  versus temperature.
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