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. .- =stimate of the natural frequency w,, we can set this energy equal to fiwe—
==rgy of an atomic oscillator whose natural frequency is wo. We get

Nlme4
Wo = 3 gE

;‘uunv‘ = ~ow use this value of wo in Eq. (11.7), we find for the electronic polarizability

2 713
o~ 167[L] : (11.12)

me?

Mke quantity (h2/me?) is the radius of the ground-state orbit of a Bohr atom (see

.~-=r 38, Vol. I) and equals 0.528 angstroms. In a gas at standard pressure and
~~erature (1 atmosphere, 0°C) there are 2.69 X 10'° atoms/cm?, so Eq. (11.9)

k = 1+ (2.69 X 1019167 (0.528 X 107832 = 1.00020. (11.13)
The dielectric constant for hydrogen gas is measured to be
Kexp = 1.00026.

% - <=2 that our theory is about right. We should not expect any better, because
. measurements were, of course, made with normal hydrogen gas, which has
.- ~mic molecules, not single atoms. We should not be surprised if the polariza-
.~ of the atoms in a molecule is not quite the same as that of the separate atoms.
.- molecular effect, however, is not really that large. An exact quantum-
~-hanical calculation of « for hydrb’%én atoms gives a result about 129, higher
\2 (11.12) (the 167 is changed to 187), and therefore predicts a dielectric constant
. —=what closer to the observed one. In any case, it is clear that our model of a
L=lectric is fairly good. ’

Another check on our theory is to try Eq. (11.12) on atoms which have a
.zmer frequency of excitation. For instance, it takes about 24.5 volts to pull the
--ron off helium, compared with the 13.5 volts required to ionize hydrogen.
W = would, therefore, expect that the absorption frequency wo for helium would be
~out twice as big as for hydrogen and that « would be one-quarter as large. We
=spect that

Khelium =~ 1000050
= «perimentally,
Kheliun = 1.000068,

.~ vou see that our rough estimates are coming out on the right track. So we have
—erstood the dielectric constant of nonpolar gas, but only qualitatively, because
+= have not yet used a correct atomic theory of the motions of the atomic electrons.

11-3 Polar molecules; orientation polarization

Next we will consider a molecule which carries a permanent dipole moment
- _such as a water molecule. With no electric field, the individual dipoles point
- random directions, so the net moment per unit volume is zero. But when an
-i=ctric field is applied, two things happen: First, there is an extra dipole moment
~duced because of the forces on the electrons; this part gives just the same kind of
-lectronic polarizability we found for a nonpolar molecule. For very accurate
~ork, this effect should, of course, be included, but we will neglect it for the
—oment. (It can always be added in at the end.) Second, the electric field tends to
‘ne up the individual dipoles to produce a net moment per unit volume. If all the
Zipoles in a gas were to line up, there would be a very large polarization, but that
ioes not happen. At ordinary temperatures and electric fields the collisions of the
—olecules in their thermal motion keep them from lining up very much. But there
s some net alignment, and so some polarization (see Fig. 11-2). The polarization
“hat does occur can be computed by the methods of statistical mechanics we
sescribed in Chapter 40 of Vol. L. X
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Fig. 11-2. (a) In a gas of polar
molecules, the individual moments are
oriented at random; the average moment
in a small volume is zero. (b) When there
is an electric field, there is some average
alignment of the molecules.













